题目链接:

poj2942

题意:

有n个人,能够开多场圆桌会议

这n个人中,有m对人有仇视的关系,相互仇视的两人坐在相邻的位置

且每场圆桌会议的人数仅仅能为奇书

问有多少人不能參加

解题思路:

首先构图,将全部的仇视关系视为一条边,最后再取已经得到的图的逆图,

这样图上连接的边就代表能够相邻而坐的关系

然后就是找奇圈了,首先就是要找图中的环(点双连通分量)

这个环为奇环的条件:不是二分图||这个环中的部分点属于其它奇环

这个推断能够通过将已找到的环进行dfs黑白染色推断

最后不在奇环内的总和即是答案

至于为什么要找的是点双连通分量而不是边双连通分量 能够试试这组数据:

6 8

1 4

1 5

1 6

2 4

2 5

2 6

3 6

4 5

0 0



得到的逆图是这种:

假设是电双连通分量(拆开割点)则分为(1 2 3)和(3 4 5 6)两部分

而假设是边双连通分量(去掉割边)则仅仅有(1 2 3 4  5 6 )一部分了

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#define maxn 1050
using namespace std;
struct node{
int to,next;
}edge[2000500];
int head[maxn],ss;
int map[maxn][maxn]; int in[maxn],odd[maxn],temp[maxn];
int color[maxn]; int dfn[maxn],low[maxn],num;
int insta[maxn],sta[maxn],top;
int n; void init()
{
memset(dfn,0,sizeof(dfn));
memset(head,-1,sizeof(head));
memset(insta,0,sizeof(insta));
memset(map,0,sizeof(map));
memset(odd,0,sizeof(odd));
top=num=ss=0;
} void addedge(int a,int b)
{
edge[ss]=(node){b,head[a]};
head[a]=ss++;
} int dfs(int u,int c)
{
color[u]=c;
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].to;
if(!in[v])
continue;
if(color[v]==c)
return 1;
else if(color[v])
continue;
else if(dfs(v,3-c))
return 1;
}
return 0;
} void Tarjan(int u,int pre)
{
dfn[u]=low[u]=++num;
insta[u]=1;
sta[top++]=u;
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].to;
if(v==pre)
continue;
if(!dfn[v])
{
Tarjan(v,u);
low[u]=min(low[u],low[v]); if(dfn[u]<=low[v])
{
int s=0,d=-1;
memset(in,0,sizeof(in));
while(d!=v) //注意是v 点双连通的还有一种写法,总之要注意割点能够属于多个连通分量
{
d=sta[--top];
in[d]=1;
insta[d]=0; //不能让u=0
temp[s++]=d;
}
in[u]=1;
memset(color,0,sizeof(color));
if(dfs(u,1)) //黑白染色判定
{
odd[u]=1;
while(s!=0)
odd[temp[--s]]=1;
}
}
}
else if(insta[v])
low[u]=min(low[u],dfn[v]);
}
} void solve()
{
for(int i=1;i<=n;i++)
if(!dfn[i])
Tarjan(i,-1);
int ans=0;
for(int i=1;i<=n;i++)
if(!odd[i])
ans++;
printf("%d\n",ans);
} int main()
{
// freopen("in.txt","r",stdin);
int m,a,b;
while(scanf("%d%d",&n,&m)&&(m+n))
{
init();
while(m--)
{
scanf("%d%d",&a,&b);
map[a][b]=map[b][a]=1;
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(i!=j&&!map[i][j]) //取逆图
addedge(i,j);
solve();
}
return 0;
}

POJ2942 Knights of the Round Table 点双连通分量,逆图,奇圈的更多相关文章

  1. POJ2942 Knights of the Round Table[点双连通分量|二分图染色|补图]

    Knights of the Round Table Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 12439   Acce ...

  2. POJ2942 Knights of the Round Table 点双连通分量 二分图判定

    题目大意 有N个骑士,给出某些骑士之间的仇恨关系,每次开会时会选一些骑士开,骑士们会围坐在一个圆桌旁.一次会议能够顺利举行,要满足两个条件:1.任意相互憎恨的两个骑士不能相邻.2.开会人数为大于2的奇 ...

  3. poj 2942 Knights of the Round Table(点双连通分量+二分图判定)

    题目链接:http://poj.org/problem?id=2942 题意:n个骑士要举行圆桌会议,但是有些骑士相互仇视,必须满足以下两个条件才能举行: (1)任何两个互相仇视的骑士不能相邻,每个骑 ...

  4. 【POJ】2942 Knights of the Round Table(双连通分量)

    http://poj.org/problem?id=2942 各种逗.... 翻译白书上有:看了白书和网上的标程,学习了..orz. 双连通分量就是先找出割点,然后用个栈在找出割点前维护子树,最后如果 ...

  5. [POJ2942]Knights of the Round Table(点双+二分图判定——染色法)

    建补图,是两个不仇恨的骑士连边,如果有环,则可以凑成一桌和谐的打麻将 不能直接缩点,因为直接缩点求的是连通分量,点双缩点只是把环缩起来 普通缩点                             ...

  6. UVALive-3523 Knights of the Round Table (双连通分量+二分图匹配)

    题目大意:有n个骑士要在圆桌上开会,但是相互憎恶的两个骑士不能相邻,现在已知骑士们之间的憎恶关系,问有几个骑士一定不能参加会议.参会骑士至少有3个且有奇数个. 题目分析:在可以相邻的骑士之间连一条无向 ...

  7. poj2942 Knights of the Round Table[点双+二分图染色]

    首先转化条件,把无仇恨的人连边,然后转化成了求有哪些点不在任何一个奇环中. 一个奇环肯定是一个点双,所以想到处理出所有点双,但是也可能有的点双是一个偶环,有的可能是偶环和奇环混杂,不好判. 考察奇环性 ...

  8. POJ 2942 Knights of the Round Table(双连通分量)

    http://poj.org/problem?id=2942 题意 :n个骑士举行圆桌会议,每次会议应至少3个骑士参加,且相互憎恨的骑士不能坐在圆桌旁的相邻位置.如果意见发生分歧,则需要举手表决,因此 ...

  9. POJ2942 Knights of the Round Table(点双连通分量 + 二分图染色)

    题目大概说要让n个骑士坐成一圈,这一圈的人数要是奇数且大于2,此外有些骑士之间有仇恨不能坐在一起,问有多少个骑士不能入座. 双连通图上任意两点间都有两条不重复点的路径,即一个环.那么,把骑士看做点,相 ...

随机推荐

  1. Spring框架学习之注解配置与AOP思想

         上篇我们介绍了Spring中有关高级依赖关系配置的内容,也可以调用任意方法的返回值作为属性注入的值,它解决了Spring配置文件的动态性不足的缺点.而本篇,我们将介绍Spring的又一大核心 ...

  2. Halcon算子翻译——assign

    名称 assign-为控制变量分配一个新的值 用法 assign( : : Input : Result) 描述 为控制变量分配一个新的值. 在全文编辑器中,只需用:=就可以进行赋值,例如:  u : ...

  3. 淘宝联盟api调用笔记

    一.流程及主要请求接口 每日凌晨1点开始,服务器定时自动请求淘宝联盟数据,请求完毕之后,执行一个存储过程对数据进行整理,删除过期...购买数量<...的商品......,请求接口分别有(tbk_ ...

  4. Web桌面应用框架3:Web桌面应用开发的N种Style

    研究Web桌面应用开发有一段时间了,总结了Web桌面应用开发的一些主流方式. 一.前端Style 这种方式的就是直接实现一个Web程序,再封装一个浏览器展示,相当粗暴和有效.著名的框架就是Electr ...

  5. Instrumentation 框架简介

    原文地址:http://www.cnblogs.com/xirihanlin/archive/2010/06/15/1758677.html Android提供了一系列强大的测试工具,它针对Andro ...

  6. javaweb-1-B/S初论

    一.B/S结构的基本概念 1.什么是动态网页 2.为什么需要动态网页 3.如何实现动态网页 4.为什么学习B/S技术 4.1C/S结构 优点: 1.C/S架构的界面和操作可以很丰富. 2.安全性能可以 ...

  7. Python Base64 编码

    0x00 Base64简介 0x01 常用场景举例 0x02 编.解码流程 0x03 Python中Base64编码与解码 0x00 Base64简介 我们知道在计算机中任何数据都是按ascii码存储 ...

  8. jq实现全选或者全不选

    $("#all").click(function () { if($(this).is(":checked")){ $("input[name='pr ...

  9. leecode -- 3sum Closet

    Given an array S of n integers, find three integers in S such that the sum is closest to a given num ...

  10. html5 实现 文件夹上传

    先插个背景:最近所在项目有个小需求,就是上传文件要可以同时选择文件夹及文件,然后把文件夹内得文件及所选单文件全部选择上传,借助于搜索关键词没搜到想要的结果(相关文章貌似很好,要么就是遍历文件夹内的文件 ...