题目链接:

poj2942

题意:

有n个人,能够开多场圆桌会议

这n个人中,有m对人有仇视的关系,相互仇视的两人坐在相邻的位置

且每场圆桌会议的人数仅仅能为奇书

问有多少人不能參加

解题思路:

首先构图,将全部的仇视关系视为一条边,最后再取已经得到的图的逆图,

这样图上连接的边就代表能够相邻而坐的关系

然后就是找奇圈了,首先就是要找图中的环(点双连通分量)

这个环为奇环的条件:不是二分图||这个环中的部分点属于其它奇环

这个推断能够通过将已找到的环进行dfs黑白染色推断

最后不在奇环内的总和即是答案

至于为什么要找的是点双连通分量而不是边双连通分量 能够试试这组数据:

6 8

1 4

1 5

1 6

2 4

2 5

2 6

3 6

4 5

0 0



得到的逆图是这种:

假设是电双连通分量(拆开割点)则分为(1 2 3)和(3 4 5 6)两部分

而假设是边双连通分量(去掉割边)则仅仅有(1 2 3 4  5 6 )一部分了

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
#define maxn 1050
using namespace std;
struct node{
int to,next;
}edge[2000500];
int head[maxn],ss;
int map[maxn][maxn]; int in[maxn],odd[maxn],temp[maxn];
int color[maxn]; int dfn[maxn],low[maxn],num;
int insta[maxn],sta[maxn],top;
int n; void init()
{
memset(dfn,0,sizeof(dfn));
memset(head,-1,sizeof(head));
memset(insta,0,sizeof(insta));
memset(map,0,sizeof(map));
memset(odd,0,sizeof(odd));
top=num=ss=0;
} void addedge(int a,int b)
{
edge[ss]=(node){b,head[a]};
head[a]=ss++;
} int dfs(int u,int c)
{
color[u]=c;
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].to;
if(!in[v])
continue;
if(color[v]==c)
return 1;
else if(color[v])
continue;
else if(dfs(v,3-c))
return 1;
}
return 0;
} void Tarjan(int u,int pre)
{
dfn[u]=low[u]=++num;
insta[u]=1;
sta[top++]=u;
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].to;
if(v==pre)
continue;
if(!dfn[v])
{
Tarjan(v,u);
low[u]=min(low[u],low[v]); if(dfn[u]<=low[v])
{
int s=0,d=-1;
memset(in,0,sizeof(in));
while(d!=v) //注意是v 点双连通的还有一种写法,总之要注意割点能够属于多个连通分量
{
d=sta[--top];
in[d]=1;
insta[d]=0; //不能让u=0
temp[s++]=d;
}
in[u]=1;
memset(color,0,sizeof(color));
if(dfs(u,1)) //黑白染色判定
{
odd[u]=1;
while(s!=0)
odd[temp[--s]]=1;
}
}
}
else if(insta[v])
low[u]=min(low[u],dfn[v]);
}
} void solve()
{
for(int i=1;i<=n;i++)
if(!dfn[i])
Tarjan(i,-1);
int ans=0;
for(int i=1;i<=n;i++)
if(!odd[i])
ans++;
printf("%d\n",ans);
} int main()
{
// freopen("in.txt","r",stdin);
int m,a,b;
while(scanf("%d%d",&n,&m)&&(m+n))
{
init();
while(m--)
{
scanf("%d%d",&a,&b);
map[a][b]=map[b][a]=1;
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(i!=j&&!map[i][j]) //取逆图
addedge(i,j);
solve();
}
return 0;
}

POJ2942 Knights of the Round Table 点双连通分量,逆图,奇圈的更多相关文章

  1. POJ2942 Knights of the Round Table[点双连通分量|二分图染色|补图]

    Knights of the Round Table Time Limit: 7000MS   Memory Limit: 65536K Total Submissions: 12439   Acce ...

  2. POJ2942 Knights of the Round Table 点双连通分量 二分图判定

    题目大意 有N个骑士,给出某些骑士之间的仇恨关系,每次开会时会选一些骑士开,骑士们会围坐在一个圆桌旁.一次会议能够顺利举行,要满足两个条件:1.任意相互憎恨的两个骑士不能相邻.2.开会人数为大于2的奇 ...

  3. poj 2942 Knights of the Round Table(点双连通分量+二分图判定)

    题目链接:http://poj.org/problem?id=2942 题意:n个骑士要举行圆桌会议,但是有些骑士相互仇视,必须满足以下两个条件才能举行: (1)任何两个互相仇视的骑士不能相邻,每个骑 ...

  4. 【POJ】2942 Knights of the Round Table(双连通分量)

    http://poj.org/problem?id=2942 各种逗.... 翻译白书上有:看了白书和网上的标程,学习了..orz. 双连通分量就是先找出割点,然后用个栈在找出割点前维护子树,最后如果 ...

  5. [POJ2942]Knights of the Round Table(点双+二分图判定——染色法)

    建补图,是两个不仇恨的骑士连边,如果有环,则可以凑成一桌和谐的打麻将 不能直接缩点,因为直接缩点求的是连通分量,点双缩点只是把环缩起来 普通缩点                             ...

  6. UVALive-3523 Knights of the Round Table (双连通分量+二分图匹配)

    题目大意:有n个骑士要在圆桌上开会,但是相互憎恶的两个骑士不能相邻,现在已知骑士们之间的憎恶关系,问有几个骑士一定不能参加会议.参会骑士至少有3个且有奇数个. 题目分析:在可以相邻的骑士之间连一条无向 ...

  7. poj2942 Knights of the Round Table[点双+二分图染色]

    首先转化条件,把无仇恨的人连边,然后转化成了求有哪些点不在任何一个奇环中. 一个奇环肯定是一个点双,所以想到处理出所有点双,但是也可能有的点双是一个偶环,有的可能是偶环和奇环混杂,不好判. 考察奇环性 ...

  8. POJ 2942 Knights of the Round Table(双连通分量)

    http://poj.org/problem?id=2942 题意 :n个骑士举行圆桌会议,每次会议应至少3个骑士参加,且相互憎恨的骑士不能坐在圆桌旁的相邻位置.如果意见发生分歧,则需要举手表决,因此 ...

  9. POJ2942 Knights of the Round Table(点双连通分量 + 二分图染色)

    题目大概说要让n个骑士坐成一圈,这一圈的人数要是奇数且大于2,此外有些骑士之间有仇恨不能坐在一起,问有多少个骑士不能入座. 双连通图上任意两点间都有两条不重复点的路径,即一个环.那么,把骑士看做点,相 ...

随机推荐

  1. 聊聊RPC及其原理

    什么是RPC? RPC是Remote Procedure Call的缩写,想Client-Servier一样的远程过程调用,也就是调用远程服务就跟调用本地服务一样方便,一般用于将程序部署在不同的机器上 ...

  2. Python爬虫入门:Urllib库的高级使用

    1.设置Headers 有些网站不会同意程序直接用上面的方式进行访问,如果识别有问题,那么站点根本不会响应,所以为了完全模拟浏览器的工作,我们需要设置一些Headers 的属性. 首先,打开我们的浏览 ...

  3. SQL Server 行转列,列转行。多行转成一列

    一.多行转成一列(并以","隔开) 表名:A 表数据: 想要的查询结果: 查询语句: SELECT name , value = ( STUFF(( SELECT ',' + va ...

  4. .Net Core2.0秒杀CMS部署到Centos7.3遇到的坑,酸爽呀

    一.Centos7.3的安装 打开VirtualBox,点击新建,如下图所示: 点击“下一步”,弹出下面的对话框,调整内存大小,建议设置为2G,这样操作更流畅点 设置好,点击“OK”,再点击“启动”, ...

  5. oracle精简客户端安装配置及常见问题

    有关Instant client 安装步骤 1.首先在官网下载两个安装包instant/sqlplus,对相关文件进行解压缩,存放本地路径 官网地址:http://www.oracle.com/tec ...

  6. cgg之字面值

    字面值时源代码中用来描述固定值的记号,可能是整数.浮点数.字符或者字符串 2.1 整数常量 除了常见的十进制数外,还有八进制(以数字0开头)或者十六进制(0x/0X)表示法. #include < ...

  7. [转]查询 SQL Server 系统目录常见问题

    查询 SQL Server 系统目录常见问题 http://msdn.microsoft.com/zh-cn/library/ms345522.aspx#_FAQ4 下列部分按类别列出常见问题. 数据 ...

  8. SpringMVC注解HelloWorld

    今天整理一下SpringMVC注解 欢迎拍砖 @RequestMapping RequestMapping是一个用来处理请求地址映射的注解,可用于类或方法上.用于类上,表示类中的所有响应请求的方法都是 ...

  9. CTF线下攻防赛

    SSH登陆 两三个人进行分工,一个粗略的看下web,有登陆口的话,就需要修改密码,将情况反馈给队友,让登陆ssh的小伙伴进行密码的修改,改成炒鸡复杂.然后将Web目录下载下来,上WAF.文件监控.端口 ...

  10. 流式处理的新贵 Kafka Stream - Kafka设计解析(七)

    原创文章,转载请务必将下面这段话置于文章开头处. 本文转发自技术世界,原文链接 http://www.jasongj.com/kafka/kafka_stream/ Kafka Stream背景 Ka ...