POJ2942 Knights of the Round Table 点双连通分量,逆图,奇圈
题目链接:
题意:
有n个人,能够开多场圆桌会议
这n个人中,有m对人有仇视的关系,相互仇视的两人坐在相邻的位置
且每场圆桌会议的人数仅仅能为奇书
问有多少人不能參加
解题思路:
首先构图,将全部的仇视关系视为一条边,最后再取已经得到的图的逆图,
这样图上连接的边就代表能够相邻而坐的关系
然后就是找奇圈了,首先就是要找图中的环(点双连通分量)
这个环为奇环的条件:不是二分图||这个环中的部分点属于其它奇环
这个推断能够通过将已找到的环进行dfs黑白染色推断
最后不在奇环内的总和即是答案
至于为什么要找的是点双连通分量而不是边双连通分量 能够试试这组数据:
6 8
1 4
1 5
1 6
2 4
2 5
2 6
3 6
4 5
0 0
得到的逆图是这种:
假设是电双连通分量(拆开割点)则分为(1 2 3)和(3 4 5 6)两部分
而假设是边双连通分量(去掉割边)则仅仅有(1 2 3 4 5 6 )一部分了
代码:
#include<iostream>
#include<cstdio>
#include<cstring>
#define maxn 1050
using namespace std;
struct node{
int to,next;
}edge[2000500];
int head[maxn],ss;
int map[maxn][maxn]; int in[maxn],odd[maxn],temp[maxn];
int color[maxn]; int dfn[maxn],low[maxn],num;
int insta[maxn],sta[maxn],top;
int n; void init()
{
memset(dfn,0,sizeof(dfn));
memset(head,-1,sizeof(head));
memset(insta,0,sizeof(insta));
memset(map,0,sizeof(map));
memset(odd,0,sizeof(odd));
top=num=ss=0;
} void addedge(int a,int b)
{
edge[ss]=(node){b,head[a]};
head[a]=ss++;
} int dfs(int u,int c)
{
color[u]=c;
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].to;
if(!in[v])
continue;
if(color[v]==c)
return 1;
else if(color[v])
continue;
else if(dfs(v,3-c))
return 1;
}
return 0;
} void Tarjan(int u,int pre)
{
dfn[u]=low[u]=++num;
insta[u]=1;
sta[top++]=u;
for(int i=head[u];i!=-1;i=edge[i].next)
{
int v=edge[i].to;
if(v==pre)
continue;
if(!dfn[v])
{
Tarjan(v,u);
low[u]=min(low[u],low[v]); if(dfn[u]<=low[v])
{
int s=0,d=-1;
memset(in,0,sizeof(in));
while(d!=v) //注意是v 点双连通的还有一种写法,总之要注意割点能够属于多个连通分量
{
d=sta[--top];
in[d]=1;
insta[d]=0; //不能让u=0
temp[s++]=d;
}
in[u]=1;
memset(color,0,sizeof(color));
if(dfs(u,1)) //黑白染色判定
{
odd[u]=1;
while(s!=0)
odd[temp[--s]]=1;
}
}
}
else if(insta[v])
low[u]=min(low[u],dfn[v]);
}
} void solve()
{
for(int i=1;i<=n;i++)
if(!dfn[i])
Tarjan(i,-1);
int ans=0;
for(int i=1;i<=n;i++)
if(!odd[i])
ans++;
printf("%d\n",ans);
} int main()
{
// freopen("in.txt","r",stdin);
int m,a,b;
while(scanf("%d%d",&n,&m)&&(m+n))
{
init();
while(m--)
{
scanf("%d%d",&a,&b);
map[a][b]=map[b][a]=1;
}
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
if(i!=j&&!map[i][j]) //取逆图
addedge(i,j);
solve();
}
return 0;
}
POJ2942 Knights of the Round Table 点双连通分量,逆图,奇圈的更多相关文章
- POJ2942 Knights of the Round Table[点双连通分量|二分图染色|补图]
Knights of the Round Table Time Limit: 7000MS Memory Limit: 65536K Total Submissions: 12439 Acce ...
- POJ2942 Knights of the Round Table 点双连通分量 二分图判定
题目大意 有N个骑士,给出某些骑士之间的仇恨关系,每次开会时会选一些骑士开,骑士们会围坐在一个圆桌旁.一次会议能够顺利举行,要满足两个条件:1.任意相互憎恨的两个骑士不能相邻.2.开会人数为大于2的奇 ...
- poj 2942 Knights of the Round Table(点双连通分量+二分图判定)
题目链接:http://poj.org/problem?id=2942 题意:n个骑士要举行圆桌会议,但是有些骑士相互仇视,必须满足以下两个条件才能举行: (1)任何两个互相仇视的骑士不能相邻,每个骑 ...
- 【POJ】2942 Knights of the Round Table(双连通分量)
http://poj.org/problem?id=2942 各种逗.... 翻译白书上有:看了白书和网上的标程,学习了..orz. 双连通分量就是先找出割点,然后用个栈在找出割点前维护子树,最后如果 ...
- [POJ2942]Knights of the Round Table(点双+二分图判定——染色法)
建补图,是两个不仇恨的骑士连边,如果有环,则可以凑成一桌和谐的打麻将 不能直接缩点,因为直接缩点求的是连通分量,点双缩点只是把环缩起来 普通缩点 ...
- UVALive-3523 Knights of the Round Table (双连通分量+二分图匹配)
题目大意:有n个骑士要在圆桌上开会,但是相互憎恶的两个骑士不能相邻,现在已知骑士们之间的憎恶关系,问有几个骑士一定不能参加会议.参会骑士至少有3个且有奇数个. 题目分析:在可以相邻的骑士之间连一条无向 ...
- poj2942 Knights of the Round Table[点双+二分图染色]
首先转化条件,把无仇恨的人连边,然后转化成了求有哪些点不在任何一个奇环中. 一个奇环肯定是一个点双,所以想到处理出所有点双,但是也可能有的点双是一个偶环,有的可能是偶环和奇环混杂,不好判. 考察奇环性 ...
- POJ 2942 Knights of the Round Table(双连通分量)
http://poj.org/problem?id=2942 题意 :n个骑士举行圆桌会议,每次会议应至少3个骑士参加,且相互憎恨的骑士不能坐在圆桌旁的相邻位置.如果意见发生分歧,则需要举手表决,因此 ...
- POJ2942 Knights of the Round Table(点双连通分量 + 二分图染色)
题目大概说要让n个骑士坐成一圈,这一圈的人数要是奇数且大于2,此外有些骑士之间有仇恨不能坐在一起,问有多少个骑士不能入座. 双连通图上任意两点间都有两条不重复点的路径,即一个环.那么,把骑士看做点,相 ...
随机推荐
- 数据结构--汉诺塔递归Java实现
/*汉诺塔递归 * 1.将编号0-N-1个圆盘,从A塔座移动到B上面 * 2.将编号N的1个圆盘,从A移动到C上面 * 3.最后将B上面的N-1个圆盘移动到C上面 * 注意:盘子的编号从上到下1-N ...
- 面向亿万级用户的QQ一般做什么?——兴趣部落的Web同构直出分享
作者:李强,腾讯web开发工程师 商业转载请联系腾讯WeTest获得授权,非商业转载请注明出处. 原文链接:http://wetest.qq.com/lab/view/348.html 一.什么是同构 ...
- Deploy .Net project automatically with MsBuild and MsDeploy (1)
Q: How to change parameter values in configuration files dynamically In the first section http://www ...
- javascript获取链接参数
var url = "http://test.cn/index.php?class=9&id=2&key=88"; function parseQueryStrin ...
- ImageMagick图片服务器
1.前置准备工具如下: nodejs express(nodejs mvc框架) body-parser(express middleware) gm(nodejs中用来处理图片的) uuid(nod ...
- 设计模式的征途—10.装饰(Decorator)模式
虽然目前房价依旧很高,就连我所在的成都郊区(非中心城区)的房价均价都早已破万,但却还是阻挡不了大家对新房的渴望和买房的热情.如果大家买的是清水房,那么无疑还有一项艰巨的任务在等着大家,那就是装修.对新 ...
- 插入排序-Python与PHP实现版
插入排序Python实现 import random a=[random.randint(1,999) for x in range(0,36)] # 直接插入排序算法 def insertionSo ...
- canvas三环加载进度条
之前做了一个三个圆形叠加在一起的加载,用的是定位和cile来操作,但是加载的头部不能是圆形.后来用canvas做了一个,但是这个加载的进度不好调整,原理很简单,就是让一个圆,按照圆形轨迹进行运动就可以 ...
- JAVA基础面试(二)
11.是否可以从一个static方法内部发出对非static方法的调用? 不可以.因为非static方法是要与对象关联在一起的,必须创建一个对象后,才可以在该对象上进行方法调用,而static方法调用 ...
- LKD: Chapter 9 An Introduction to Kernel Synchronization
This chapter introduces some conception about kernel synchronization generally. Critical Regions: Co ...