一、TensorFlow简介

1.TensorFlow定义

tensor  :张量,N维数组

Flow   :  流,基于数据流图的计算

TensorFlow : 张量从图像的一端流动到另一端的计算过程,是将复杂的数据结     构传输至人工智能神经网络中进行分析和处理的过程。


2. 工作模式:

    图graphs表示计算任务,图中的节点称之为op(operation) ,一个 op可以获得0个      或多个张量(tensor),通过创建会话(session)对象来执行计算,产生0个或多个tensor。

其工作模式分为两步:(1)define the computation graph

(2)run the graph (with data) in session


3. 特点:

(1)异步:一处写、一处读、一处训练

(2)全局 : 操作添加到全局的graph中 , 监控添加到全局的summary中,

参数/损失添加到全局的collection中

(3)符号式的:创建时没有具体,运行时才传入


二、   代码

1 、定义神经网络的相关参数和变量

 # -*- coding: utf-8 -*-
# version:python 3.5
import tensorflow as tf
from numpy.random import RandomState batch_size = 8
x = tf.placeholder(tf.float32, shape=(None, 2), name="x-input")
y_ = tf.placeholder(tf.float32, shape=(None, 1), name='y-input')
w1= tf.Variable(tf.random_normal([2, 1], stddev=1, seed=1))
y = tf.matmul(x, w1)

2、设置自定义的损失函数

 # 定义损失函数使得预测少了的损失大,于是模型应该偏向多的方向预测。
loss_less = 10
loss_more = 1
loss = tf.reduce_sum(tf.where(tf.greater(y, y_), (y - y_) * loss_more, (y_ - y) * loss_less))
train_step = tf.train.AdamOptimizer(0.001).minimize(loss)

3、生成模拟数据集

 rdm = RandomState(1)
X = rdm.rand(128,2)
Y = [[x1+x2+rdm.rand()/10.0-0.05] for (x1, x2) in X]

4、训练模型

 with tf.Session() as sess:
init_op = tf.global_variables_initializer()
sess.run(init_op)
STEPS = 5000
for i in range(STEPS):
start = (i*batch_size) % 128
end = (i*batch_size) % 128 + batch_size
sess.run(train_step, feed_dict={x: X[start:end], y_: Y[start:end]})
if i % 1000 == 0:
print("After %d training step(s), w1 is: " % (i))
print sess.run(w1), "\n"
print "Final w1 is: \n", sess.run(w1)

结果:

After 0 training step(s), w1 is:
[[-0.81031823]
[ 1.4855988 ]] After 1000 training step(s), w1 is:
[[ 0.01247112]
[ 2.1385448 ]] After 2000 training step(s), w1 is:
[[ 0.45567414]
[ 2.17060661]] After 3000 training step(s), w1 is:
[[ 0.69968724]
[ 1.8465308 ]] After 4000 training step(s), w1 is:
[[ 0.89886665]
[ 1.29736018]] Final w1 is:
[[ 1.01934695]
[ 1.04280889]]

5、重新定义损失函数,使得预测多了的损失大,于是模型应该偏向少的方向预测

 loss_less = 1
loss_more = 10
loss = tf.reduce_sum(tf.where(tf.greater(y, y_), (y - y_) * loss_more, (y_ - y) * loss_less))
train_step = tf.train.AdamOptimizer(0.001).minimize(loss) with tf.Session() as sess:
init_op = tf.global_variables_initializer()
sess.run(init_op)
STEPS = 5000
for i in range(STEPS):
start = (i*batch_size) % 128
end = (i*batch_size) % 128 + batch_size
sess.run(train_step, feed_dict={x: X[start:end], y_: Y[start:end]})
if i % 1000 == 0:
print("After %d training step(s), w1 is: " % (i))
print sess.run(w1), "\n"
print "Final w1 is: \n", sess.run(w1)

结果:

After 0 training step(s), w1 is:
[[-0.81231821]
[ 1.48359871]] After 1000 training step(s), w1 is:
[[ 0.18643527]
[ 1.07393336]] After 2000 training step(s), w1 is:
[[ 0.95444274]
[ 0.98088616]] After 3000 training step(s), w1 is:
[[ 0.95574027]
[ 0.9806633 ]] After 4000 training step(s), w1 is:
[[ 0.95466018]
[ 0.98135227]] Final w1 is:
[[ 0.95525807]
[ 0.9813394 ]]
												

深度学习之tensorflow (一)的更多相关文章

  1. 深度学习之TensorFlow构建神经网络层

    深度学习之TensorFlow构建神经网络层 基本法 深度神经网络是一个多层次的网络模型,包含了:输入层,隐藏层和输出层,其中隐藏层是最重要也是深度最多的,通过TensorFlow,python代码可 ...

  2. 深度学习(TensorFlow)环境搭建:(三)Ubuntu16.04+CUDA8.0+cuDNN7+Anaconda4.4+Python3.6+TensorFlow1.3

    紧接着上一篇的文章<深度学习(TensorFlow)环境搭建:(二)Ubuntu16.04+1080Ti显卡驱动>,这篇文章,主要讲解如何安装CUDA+CUDNN,不过前提是我们是已经把N ...

  3. 【原创 深度学习与TensorFlow 动手实践系列 - 4】第四课:卷积神经网络 - 高级篇

    [原创 深度学习与TensorFlow 动手实践系列 - 4]第四课:卷积神经网络 - 高级篇 提纲: 1. AlexNet:现代神经网络起源 2. VGG:AlexNet增强版 3. GoogleN ...

  4. 【原创 深度学习与TensorFlow 动手实践系列 - 3】第三课:卷积神经网络 - 基础篇

    [原创 深度学习与TensorFlow 动手实践系列 - 3]第三课:卷积神经网络 - 基础篇 提纲: 1. 链式反向梯度传到 2. 卷积神经网络 - 卷积层 3. 卷积神经网络 - 功能层 4. 实 ...

  5. 分享《机器学习实战基于Scikit-Learn和TensorFlow》中英文PDF源代码+《深度学习之TensorFlow入门原理与进阶实战》PDF+源代码

    下载:https://pan.baidu.com/s/1qKaDd9PSUUGbBQNB3tkDzw <机器学习实战:基于Scikit-Learn和TensorFlow>高清中文版PDF+ ...

  6. 深度学习(TensorFlow)环境搭建:(二)Ubuntu16.04+1080Ti显卡驱动

    前几天把刚拿到了2台GPU机器组装好了,也写了篇硬件配置清单的文章——<深度学习(TensorFlow)环境搭建:(一)硬件选购和主机组装>.这两台也在安装Ubuntu 16.04和108 ...

  7. 深度学习(TensorFlow)环境搭建:(一)硬件选购和主机组装

    一.硬件采购 近年来,人工智能AI越来越多被人们所了解,尤其是AlphaGo的人机围棋大战之后,机器学习的热潮也随之高涨.最近,公司采购了几批设备,通过深度学习(TensorFlow)来研究金融行业相 ...

  8. 截图:【炼数成金】深度学习框架Tensorflow学习与应用

    创建图.启动图 Shift+Tab Tab 变量介绍: F etch Feed 简单的模型构造 :线性回归 MNIST数据集 Softmax函数 非线性回归神经网络   MINIST数据集分类器简单版 ...

  9. 转发——谷歌云官方:一小时掌握深度学习和 TensorFlow

    转发——谷歌云官方:一小时掌握深度学习和 TensorFlow 本文转发自新智元,链接如下: http://mp.weixin.qq.com/s?__biz=MzI3MTA0MTk1MA==& ...

  10. 深度学习篇——Tensorflow配置(傻瓜安装模式)

    前言 如果你是一个完美主义者,那么请绕过此文,请参考<深度学习篇——Tensorflow配置(完美主义模式)> 安装 pip install tensorflow ok,只要不报错,安装就 ...

随机推荐

  1. python识别验证码——一般的数字加字母验证码识别

    1.验证码的识别是有针对性的,不同的系统.应用的验证码区别有大有小,只要处理好图片,利用好pytesseract,一般的验证码都可以识别 2.我在识别验证码的路上走了很多弯路,重点应该放在怎么把图片处 ...

  2. scala PartialFunction

    1.orElse和andThen的区别 源码如下,区别很明显,orElse是并列的关系,而andThen是调用者的结果作为k的输入. trait PartialFunction[-A, +B] ext ...

  3. SAP smartform 实现打印条形码

    先在SE73里定义一个新的BARCODE,注意一定要用新的才可以,旧的是打印不出来的. 然后定义一个SMARTFORM的样式,把你定义的BARCODE放到字符样式里面去. 再做SMARTFORM就可以 ...

  4. Java 内存模型- Java Memory Model

    多线程越来越多的使用,使得我们需要对它的深入理解.那么就涉及到了Java内存模型JMM.JMM是JVM的一部分,JMM定义了一个线程修改了一个共享变量,其他线程什么时候或者如何看到这个变量,如何去访问 ...

  5. win10 + python3.6 + VSCode + tensorflow-gpu + keras + cuda8 + cuDN6N环境配置

    写在前面的话: 再弄这个之前,我对python也好,tensorflow也好几乎是0认知的,所以配置这个环境的时候,走了不少弯路,整整耗费了一个星期的时间才搭配完整这个环境,简直了...然而最气的是, ...

  6. 浅谈前后端分离与实践 之 nodejs 中间层服务(二)

    一.背景 书接上文,浅谈前后端分离与实践(一) 我们用mock服务器搭建起来了自己的前端数据模拟服务,前后端开发过程中只需定义好接口规范,便可以相互进行各自的开发任务.联调的时候,按照之前定义的开发规 ...

  7. LINUX 笔记-wget命令

    使用wget下载单个文件 命令:wget http://www.minjieren.com/wordpress-3.1-zh_CN.zip 使用wget -c断点续传 命令:wget -c http: ...

  8. LINUX 笔记-VIM常用命令整理

    1.进入insert模式 o:当前行后 O:当前行前 r:替换当前字符 R:替换当前字符直到ESC 2.删除命令 #dw:删除#个word d^:删除至行尾 d$:删除至行首 3. u:撤消 ctrl ...

  9. Linux命令用法

    1.cut http://www.cnblogs.com/dong008259/archive/2011/12/09/2282679.html 2.sed http://www.cnblogs.com ...

  10. dynamic_cast 转换示例

    dynamic_cast 转换示例 /* 带虚函数与不带虚函数转换的区别 dynamic_cast:必须要有虚函数才可以转换 dynamic_cast:只能处理转换指针或引用,不能转换对象 dynam ...