深度学习之tensorflow (一)
一、TensorFlow简介
1.TensorFlow定义:
tensor :张量,N维数组
Flow : 流,基于数据流图的计算
TensorFlow : 张量从图像的一端流动到另一端的计算过程,是将复杂的数据结 构传输至人工智能神经网络中进行分析和处理的过程。
2. 工作模式:
图graphs表示计算任务,图中的节点称之为op(operation) ,一个 op可以获得0个 或多个张量(tensor),通过创建会话(session)对象来执行计算,产生0个或多个tensor。
其工作模式分为两步:(1)define the computation graph
(2)run the graph (with data) in session
3. 特点:
(1)异步:一处写、一处读、一处训练
(2)全局 : 操作添加到全局的graph中 , 监控添加到全局的summary中,
参数/损失添加到全局的collection中
(3)符号式的:创建时没有具体,运行时才传入
二、 代码
1 、定义神经网络的相关参数和变量
# -*- coding: utf-8 -*-
# version:python 3.5
import tensorflow as tf
from numpy.random import RandomState batch_size = 8
x = tf.placeholder(tf.float32, shape=(None, 2), name="x-input")
y_ = tf.placeholder(tf.float32, shape=(None, 1), name='y-input')
w1= tf.Variable(tf.random_normal([2, 1], stddev=1, seed=1))
y = tf.matmul(x, w1)
2、设置自定义的损失函数
# 定义损失函数使得预测少了的损失大,于是模型应该偏向多的方向预测。
loss_less = 10
loss_more = 1
loss = tf.reduce_sum(tf.where(tf.greater(y, y_), (y - y_) * loss_more, (y_ - y) * loss_less))
train_step = tf.train.AdamOptimizer(0.001).minimize(loss)
3、生成模拟数据集
rdm = RandomState(1)
X = rdm.rand(128,2)
Y = [[x1+x2+rdm.rand()/10.0-0.05] for (x1, x2) in X]
4、训练模型
with tf.Session() as sess:
init_op = tf.global_variables_initializer()
sess.run(init_op)
STEPS = 5000
for i in range(STEPS):
start = (i*batch_size) % 128
end = (i*batch_size) % 128 + batch_size
sess.run(train_step, feed_dict={x: X[start:end], y_: Y[start:end]})
if i % 1000 == 0:
print("After %d training step(s), w1 is: " % (i))
print sess.run(w1), "\n"
print "Final w1 is: \n", sess.run(w1)
结果:
After 0 training step(s), w1 is:
[[-0.81031823]
[ 1.4855988 ]] After 1000 training step(s), w1 is:
[[ 0.01247112]
[ 2.1385448 ]] After 2000 training step(s), w1 is:
[[ 0.45567414]
[ 2.17060661]] After 3000 training step(s), w1 is:
[[ 0.69968724]
[ 1.8465308 ]] After 4000 training step(s), w1 is:
[[ 0.89886665]
[ 1.29736018]] Final w1 is:
[[ 1.01934695]
[ 1.04280889]]
5、重新定义损失函数,使得预测多了的损失大,于是模型应该偏向少的方向预测
loss_less = 1
loss_more = 10
loss = tf.reduce_sum(tf.where(tf.greater(y, y_), (y - y_) * loss_more, (y_ - y) * loss_less))
train_step = tf.train.AdamOptimizer(0.001).minimize(loss) with tf.Session() as sess:
init_op = tf.global_variables_initializer()
sess.run(init_op)
STEPS = 5000
for i in range(STEPS):
start = (i*batch_size) % 128
end = (i*batch_size) % 128 + batch_size
sess.run(train_step, feed_dict={x: X[start:end], y_: Y[start:end]})
if i % 1000 == 0:
print("After %d training step(s), w1 is: " % (i))
print sess.run(w1), "\n"
print "Final w1 is: \n", sess.run(w1)
结果:
After 0 training step(s), w1 is:
[[-0.81231821]
[ 1.48359871]] After 1000 training step(s), w1 is:
[[ 0.18643527]
[ 1.07393336]] After 2000 training step(s), w1 is:
[[ 0.95444274]
[ 0.98088616]] After 3000 training step(s), w1 is:
[[ 0.95574027]
[ 0.9806633 ]] After 4000 training step(s), w1 is:
[[ 0.95466018]
[ 0.98135227]] Final w1 is:
[[ 0.95525807]
[ 0.9813394 ]]
深度学习之tensorflow (一)的更多相关文章
- 深度学习之TensorFlow构建神经网络层
深度学习之TensorFlow构建神经网络层 基本法 深度神经网络是一个多层次的网络模型,包含了:输入层,隐藏层和输出层,其中隐藏层是最重要也是深度最多的,通过TensorFlow,python代码可 ...
- 深度学习(TensorFlow)环境搭建:(三)Ubuntu16.04+CUDA8.0+cuDNN7+Anaconda4.4+Python3.6+TensorFlow1.3
紧接着上一篇的文章<深度学习(TensorFlow)环境搭建:(二)Ubuntu16.04+1080Ti显卡驱动>,这篇文章,主要讲解如何安装CUDA+CUDNN,不过前提是我们是已经把N ...
- 【原创 深度学习与TensorFlow 动手实践系列 - 4】第四课:卷积神经网络 - 高级篇
[原创 深度学习与TensorFlow 动手实践系列 - 4]第四课:卷积神经网络 - 高级篇 提纲: 1. AlexNet:现代神经网络起源 2. VGG:AlexNet增强版 3. GoogleN ...
- 【原创 深度学习与TensorFlow 动手实践系列 - 3】第三课:卷积神经网络 - 基础篇
[原创 深度学习与TensorFlow 动手实践系列 - 3]第三课:卷积神经网络 - 基础篇 提纲: 1. 链式反向梯度传到 2. 卷积神经网络 - 卷积层 3. 卷积神经网络 - 功能层 4. 实 ...
- 分享《机器学习实战基于Scikit-Learn和TensorFlow》中英文PDF源代码+《深度学习之TensorFlow入门原理与进阶实战》PDF+源代码
下载:https://pan.baidu.com/s/1qKaDd9PSUUGbBQNB3tkDzw <机器学习实战:基于Scikit-Learn和TensorFlow>高清中文版PDF+ ...
- 深度学习(TensorFlow)环境搭建:(二)Ubuntu16.04+1080Ti显卡驱动
前几天把刚拿到了2台GPU机器组装好了,也写了篇硬件配置清单的文章——<深度学习(TensorFlow)环境搭建:(一)硬件选购和主机组装>.这两台也在安装Ubuntu 16.04和108 ...
- 深度学习(TensorFlow)环境搭建:(一)硬件选购和主机组装
一.硬件采购 近年来,人工智能AI越来越多被人们所了解,尤其是AlphaGo的人机围棋大战之后,机器学习的热潮也随之高涨.最近,公司采购了几批设备,通过深度学习(TensorFlow)来研究金融行业相 ...
- 截图:【炼数成金】深度学习框架Tensorflow学习与应用
创建图.启动图 Shift+Tab Tab 变量介绍: F etch Feed 简单的模型构造 :线性回归 MNIST数据集 Softmax函数 非线性回归神经网络 MINIST数据集分类器简单版 ...
- 转发——谷歌云官方:一小时掌握深度学习和 TensorFlow
转发——谷歌云官方:一小时掌握深度学习和 TensorFlow 本文转发自新智元,链接如下: http://mp.weixin.qq.com/s?__biz=MzI3MTA0MTk1MA==& ...
- 深度学习篇——Tensorflow配置(傻瓜安装模式)
前言 如果你是一个完美主义者,那么请绕过此文,请参考<深度学习篇——Tensorflow配置(完美主义模式)> 安装 pip install tensorflow ok,只要不报错,安装就 ...
随机推荐
- Django REST FrameWork中文教程3:基于类的视图
我们也可以使用基于类的视图编写我们的API视图,而不是基于函数的视图.我们将看到这是一个强大的模式,允许我们重用常用功能,并帮助我们保持代码DRY. 使用基于类的视图重写我们的API 我们将首先将根视 ...
- Ajax笔记 XHR XMLHttpRequest
XMLHttpRequest xhr XmlHttpRequest var request ; if(Windows.XMLHttpRequest) { request ...
- redis基本教程
http://www.runoob.com/redis/redis-tutorial.html
- python学习之第三课时--基本数据类型及区别,变量
基本数据类型及区别 1. 数字类型(int) 数字型--变量值直接是数字,没有双引号"" 整数 2. 浮点数(float) 肤浅理解小数点后有有效数字 1.55 0.22 ...
- 记录一个Unity播放器插件的开发
背景 公司最近在做VR直播平台,VR开发我们用到了Unity,而在Unity中播放视频就需要一款视频插件,我们调研了几个视频插件,记录两个,如下: Unity视频插件调研 网上搜了搜,最流行的有以下两 ...
- 脱壳第一讲,手工脱壳ASPack2.12的壳.ESP定律
脱壳第一讲,手工脱壳ASPack2.12的壳.ESP定律 一丶什么是ESP定律 首先我们要明白什么是壳.壳的作用就是加密PE的. 而ESP定律就是壳在加密之前,肯定会保存所有寄存器环境,而出来的时候, ...
- Mapper 动态代理方式
Mapper接口开发方法只需要程序员编写Mapper接口(相当于Dao接口),由Mybatis框架根据接口定义创建接口的动态代理对象,代理对象的方法体同上边Dao接口实现类方法. Mapper接口开发 ...
- [JAVA第二课] java命名规则
Java良好的命名规则以及代码风格可以看出来一个程序员的功底,好多公司也会注重这方面,他们招聘员工在有些时候往往就是根据一个人的代码风格来招人,所以下面就就我知道的代码风格作简要的说明一下.Java命 ...
- LeetCode 106. Construct Binary Tree from Inorder and Postorder Traversal (用中序和后序树遍历来建立二叉树)
Given inorder and postorder traversal of a tree, construct the binary tree. Note:You may assume that ...
- Svn———搭建及配置
一.Svn介绍 subversion(简称svn)是近几年崛起的版本管理软件,是cvs的接班人,目前绝大多数开源软件都使用svn作为代码版本管理软件.Subversion支持linux和windows ...