UVA 10891 Game of Sum
题目大意就是有一个整数串,有两个人轮流取,每次可以取走一个前缀或后缀。两人都足够聪明,且都会使自己收益最大。求取完后先手比后手多多少。
每次我看见上面那句就会深感自己的愚笨无知。
所以来推推性质?
1.两人取的和是一定的,所以只要先手收益尽量大就可以了,问题转化为求收益尽量大。
2.对于一个区间(l,r),确定了先后手关系,因为两人都足够聪明,所以答案是确定的。
3.因为每次都是从前面或后面取,所以不管怎么取,剩下的一定是一段连续的串。
对于这种两人够聪明但我不聪明的问题,就把聪明丢给状态就可以了。
直接设D(L,R)表示先手在当前串为[l,r]时聪明地选的最大收益。
那么怎么转移呢?先手收益就是总和-后手收益,综合不变,就是要后手收益最小。
因为后手在先手取完后转先手,所以状态转移就出来了。
D(i,j)=Sum(i,j)-min( (D(i+1,j),D(i+2,j),……,D(j,j)) , (D(i,j-1),D(i,j-2),……,D(i,i)) , 0 )。
其中前面是本次从左边取一段,中间是本次从右边取一段,后面是本次取完。
这么写起来可以打记忆搜,复杂度是O(n^3)的,也跑得过去了。
看着上面那个式子很想优化一下?
设 f(i,j)=min(D(i,j),D(i+1,j),……,D(j,j)), g(i,j)=min(D(i,j-1),D(i,j-2),……,D(i,i))。
则D(i,j)=min( min( f(i+1,j),g(i,j-1) ) , 0)。
f和g的转移也很好做。
f(i,j) = min ( f(i+1,j) , D(i,j) ),g(i,j) = min ( g(i,j-1) , D(i,j) )。
于是就可以O(n^2)解决辣。
#include <iostream>
#include <cstdio>
#include <cstdlib>
#include <algorithm>
#include <vector>
#include <cstring>
#include <queue>
#include <complex>
#include <stack>
#define LL long long int
#define dob double
#define FILE "10891"
using namespace std; const int N = ;
int n,f[N][N],g[N][N],D[N][N],S[N]; inline int gi(){
int x=,res=;char ch=getchar();
while(ch>''||ch<''){if(ch=='-')res*=-;ch=getchar();}
while(ch<=''&&ch>='')x=x*+ch-,ch=getchar();
return x*res;
} int main()
{
while(n=gi()){
memset(f,,sizeof(f));memset(g,,sizeof(g));
for(int i=;i<=n;++i)
S[i]=S[i-]+(D[i][i]=f[i][i]=g[i][i]=gi());
for(int len=;len<=n;++len)
for(int i=;i<=n;++i){
int j=i+len-;if(j>n)break;
D[i][j]=S[j]-S[i-]-min(,min(f[i+][j],g[i][j-]));
f[i][j]=min(f[i+][j],D[i][j]);
g[i][j]=min(g[i][j-],D[i][j]);
}
printf("%d\n",*D[][n]-(S[n]-S[]));
}
return ;
}
Game of Sum
UVA 10891 Game of Sum的更多相关文章
- 09_Sum游戏(UVa 10891 Game of Sum)
问题来源:刘汝佳<算法竞赛入门经典--训练指南> P67 例题28: 问题描述:有一个长度为n的整数序列,两个游戏者A和B轮流取数,A先取,每次可以从左端或者右端取一个或多个数,但不能两端 ...
- uva 10891 Game of Sum(区间dp)
题目连接:10891 - Game of Sum 题目大意:有n个数字排成一条直线,然后有两个小伙伴来玩游戏, 每个小伙伴每次可以从两端(左或右)中的任意一端取走一个或若干个数(获得价值为取走数之和) ...
- [题解]UVa 10891 Game of Sum
在游戏的任何时刻剩余的都是1 - n中的一个连续子序列.所以可以用dp[i][j]表示在第i个数到第j个数中取数,先手的玩家得到的最大的分值.因为两个人都很聪明,所以等于自己和自己下.基本上每次就都是 ...
- UVa 10891 Game of Sum - 动态规划
因为数的总和一定,所以用一个人得分越高,那么另一个人的得分越低. 用$dp[i][j]$表示从$[i, j]$开始游戏,先手能够取得的最高分. 转移通过枚举取的数的个数$k$来转移.因为你希望先手得分 ...
- UVa 10891 - Game of Sum 动态规划,博弈 难度: 0
题目 https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&a ...
- UVA 10891 Game of Sum(区间DP(记忆化搜索))
题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...
- UVA - 10891 Game of Sum 区间DP
题目连接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=19461 Game of sum Description This ...
- UVA 10891 Game of Sum(DP)
This is a two player game. Initially there are n integer numbers in an array and players A and B get ...
- 28.uva 10891 Game of Sum 记忆化dp
这题和上次的通化邀请赛的那题一样,而且还是简化版本... 那题的题解 请戳这里 ... #include<cstdio> #include<algorithm> #i ...
随机推荐
- 常用接口简析3---IList和List的解析
常用接口的解析(链接) 1.IEnumerable深入解析 2.IEnumerable.IEnumerator接口解析 3.IComparable.IComparable接口解析 学习第一步,先上菜: ...
- 数细胞-swust oj
数细胞(0964) 一矩形阵列由数字0到9组成,数字1到9代表细胞,细胞的定义为沿细胞数字上下左右还是细胞数字则为同一细胞,求给定矩形阵列的细胞个数.编程需要用到的队列及其相关函数已经实现,你只需要完 ...
- fragment显示 Binary XML file line #12: Error inflating class fragment 错误
问题 最近换了新机子,今天在静态用fragment时突然发现闪退,一看显示 Binary XML file line #12: Error inflating class fragment 错误 后面 ...
- 【原创】python基于大数据现实双色球预测
前提准备:利用sql筛选出每个球出现概率最高的前5个数 原理:先爬出所有的历史数据,然后模拟摇奖机出球的机制并大量模拟计算,直到出现列表中的某一个数后即停 注意事项:由于计算过程数据量很大,需要加入内 ...
- Java开发步骤
3.编辑Java源程序 使用纯文本编辑器,比如记事本notpad.exe:EditPlus.UltraEdit等专业的纯文本编辑器. Word不是纯文本编辑器. 需求:写一个Java程序,在控制台打印 ...
- ios多线程开发总结
1>无论使用哪种方法进行多线程开发,每个线程启动后并不一定立即执行相应的操作,具体什么时候由系统调度(CPU空闲时就会执行). 2>更新UI应该在主线程(UI线程)中进行,并且推荐使用同步 ...
- 两天快速开发一个自己的微信小程序
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px "Songti SC" } p.p2 { margin: 0.0px 0. ...
- js计时函数实现秒表的开始-暂停-清零功能
<!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...
- CSS中line-height与vertical-align
参考文章: 深入了解CSS的line-height属性 Vertical-Align: 你需要知道的所有事[译] Vertical-Align: All You Need To Know 1.什么是行 ...
- Java的单例模式
单例模式:单例模式确保其一个类只有一个实例,而且自行实例化并向整个系统提供这个实例. 单例模式又分为:懒汉式,饿汉式等; 特点: a.单例只有一个实例. b.必须自己创建自己唯一的实例 c.单例类必须 ...