HDU 1874 畅通工程续(模板题——Floyd算法)
题目:
现在,已知起点和终点,请你计算出要从起点到终点,最短需要行走多少距离。
Input
本题目包含多组数据,请处理到文件结束。
每组数据第一行包含两个正整数N和M(0<N<200,0<M<1000),分别代表现有城镇的数目和已修建的道路的数目。城镇分别以0~N-1编号。
接下来是M行道路信息。每一行有三个整数A,B,X(0<=A,B<N,A!=B,0<X<10000),表示城镇A和城镇B之间有一条长度为X的双向道路。
再接下一行有两个整数S,T(0<=S,T<N),分别代表起点和终点。
Output
对于每组数据,请在一行里输出最短需要行走的距离。如果不存在从S到T的路线,就输出-1.
Sample Input
3 3
0 1 1
0 2 3
1 2 1
0 2
3 1
0 1 1
1 2
Sample Output
2
-1
题意描述:
输入城镇数N和道路数M(0<N<200,0<M<1000)以及道路信息
计算并输出最短路,如不存在输出“-1”
解题思路:
最短路模板题,处理数据使用Floyd算法即可。
代码实现:
#include<stdio.h>
int main()
{
int n,m,e[][],inf=,t1,t2,t3,s,t,i,j,k;
while(scanf("%d%d",&n,&m) != EOF)
{
for(i=;i<n;i++)
{
for(j=;j<n;j++)
{
if(i==j)
e[i][j]=;
else
e[i][j]=inf;
}
}
for(i=;i<=m;i++)
{
scanf("%d%d%d",&t1,&t2,&t3);
if(e[t1][t2] > t3)//道路可能存在重复,去最小值即可
e[t1][t2]=e[t2][t1]=t3;
}
scanf("%d%d",&s,&t); for(k=;k<n;k++)
for(i=;i<n;i++)
for(j=;j<n;j++)
if(e[i][j] > e[i][k]+e[k][j])
e[i][j]=e[i][k]+e[k][j];
if(e[s][t]==inf)
printf("-1\n");
else
printf("%d\n",e[s][t]);
}
return ;
}
易错分析:
1、坑还是有的,数据可能存在道路重复,但我们只需取最短即可
HDU 1874 畅通工程续(模板题——Floyd算法)的更多相关文章
- hdu 1874 畅通工程续(模板题 spfa floyd)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=1874 spfa 模板 #include<iostream> #include<stdio ...
- HDU 1874 畅通工程续 SPFA || dijkstra||floyd
http://acm.hdu.edu.cn/showproblem.php?pid=1874 题目大意: 给你一些点,让你求S到T的最短路径. 我只是来练习一下SPFA的 dijkstra+邻接矩阵 ...
- HDU 1874 畅通工程续(初涉dijkstra算法实现)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1874 dijkstra算法实现可参照此博客学习:http://www.cnblogs.com/biye ...
- ACM: HDU 1874 畅通工程续-Dijkstra算法
HDU 1874 畅通工程续 Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u Desc ...
- HDU 1874 畅通工程续-- Dijkstra算法详解 单源点最短路问题
参考 此题Dijkstra算法,一次AC.这个算法时间复杂度O(n2)附上该算法的演示图(来自维基百科): 附上: 迪科斯彻算法分解(优酷) problem link -> HDU 1874 ...
- hdu 1874 畅通工程续
题目连接 http://acm.hdu.edu.cn/showproblem.php?pid=1874 畅通工程续 Description 某省自从实行了很多年的畅通工程计划后,终于修建了很多路.不过 ...
- HDU 1874畅通工程续(迪杰斯特拉算法)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1874 畅通工程续 Time Limit: 3000/1000 MS (Java/Others) ...
- HDU 1874 畅通工程续【Floyd算法实现】
畅通工程续 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submi ...
- hdu 1874 畅通工程续(求最短距离,dijkstra,floyd)
题目:http://acm.hdu.edu.cn/showproblem.php?pid=1874 /************************************************* ...
- hdu 1874 畅通工程续(迪杰斯特拉优先队列,floyd,spfa)
畅通工程续 Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Total Subm ...
随机推荐
- lesson - 11 正则表达式
正则就是有一定规律的字符串,有几个特殊符号很关键(. * + ? | ),我们平时不仅可以用命令行工具grep/sed/awk去引用正则,而且还可以把正则嵌入在nginx.apache.甚至php.p ...
- chmod 命令详解
chmod 作用:修改目录或文件权限(= 赋值不管存在与否, + 增加权限)符号链接的权限无法变更, 如果用户对符号链接修改权限, 其改变会作用在被链接的原始文件. 参数: -R: 递归修改处理 -v ...
- cat/tac/more/less 命令详解
cat:(http://www.cnblogs.com/peida/archive/2012/10/30/2746968.html) *cat主要有三大功能:1.一次显示整个文件:cat filena ...
- vue基础学习(一)
01-01 vue使用雏形 <div id="box"> {{msg}} </div> <script> window.onload= func ...
- Paho -物联网 MQTT C Cient的实现和详解
概述 在文章Paho - MQTT C Cient的实现中,我介绍了如何使用Paho开源项目创建MQTTClient_pulish客户端.但只是简单的介绍了使用方法,而且客户端的结果与之前介绍的并 ...
- 搭建redis cluster
1 下载 redis安装包 tar zxvf redis-3.0.2.tar.gz cd redis-3.0.2/ make make install 2安装ruby sudo apt-get in ...
- Linux下Jdk的安装和jdk环境变量的设置
我们在Linux下安装系统软件的时候,经常遇到一些系统环境变量配置的问题.什么是环境变量?如何定制环境变量?我将在下面做一些介绍.一.什么是环境变量?Linux是一个多用户的操作系统.多用户意味着每个 ...
- MicroPython教程之TPYBoard开发板DIY红外寻迹小车
智能小车现在差不多是电子竞赛或者DIY中的主流了,寻迹,壁障,遥控什么的,相信大家也都见得很多了,这次就大家探讨一下寻迹小车的制作方法,不同于以往的是这次的程序不用C语言写,而是要使用python语言 ...
- ORM框架 EF - code first 的封装 优化一
上一节我们讲到对EF(EntityFramework)的初步封装,任何事情都不可能一蹴而就,通过大量的实际项目的实战,也发现了其中的各种问题.在这一章中,我们对上一章的EF_Helper_DG进行优化 ...
- 【扩展欧几里得】NOIP2012同余方程
题目描述 求关于 x 的同余方程 ax ≡ 1 (mod b)的最小正整数解. 输入输出格式 输入格式: 输入只有一行,包含两个正整数 a, b,用一个空格隔开. 输出格式: 输出只有一行,包含一个正 ...