---恢复内容开始---

一、join方法

(1)开一个主线程

from threading import Thread,currentThread
import time
def walk():
print('%s is running'%currentThread().getName())
time.sleep(2)
print('%s is done'%currentThread().getName())
if __name__ == '__main__':
# for i in range(10):
p=Thread(target=walk)
p.start()
p.join()
print('主') #主线程在等p.join执行

开一个主线程

(2)开多个主线程,并发运行

from threading import Thread,currentThread
import time
def walk():
print('%s is running'%currentThread().getName())
time.sleep(2)
print('%s is done'%currentThread().getName())
if __name__ == '__main__':
l=[]
for i in range(10):
p=Thread(target=walk)
l.append(p)
p.start()
# p.join() #在p.start() 跟p.join()就会变为串行,一个一个的运行
for p in l:
p.join()
print('主')

开多个主线程

(3)并发运行 互斥锁之锁局部的 ,用所只锁住你对共享数据修改的部分

加锁:

from threading import Thread,currentThread,Lock
import time
n=100
def walk():
# 并发运行
time.sleep(2)
global n
mutex.acquire()
# 串行
temp=n
time.sleep(0.01)
n=temp-1 #数据可能同是减1,可能数据会乱
mutex.release()
if __name__ == '__main__':
mutex=Lock()
l=[]
start = time.time()
for i in range(100):
p=Thread(target=walk)
l.append(p)
p.start()
for p in l:
p.join()
stop = time.time()
print('n:%s run_time : %s' %(n,stop - start))

不加锁:

from threading import Thread,currentThread,Lock
import time
n=100
def walk():
time.sleep(2)
global n
# mutex.acquire()
temp=n
time.sleep(0.1)
n=temp-1 #数据可能同是减1,可能数据会乱
# mutex.release()
if __name__ == '__main__':
mutex=Lock()
start = time.time()
for i in range(10):
p=Thread(target=walk)
p.start()
p.join()
stop = time.time()
print('n:%s run_time : %s' %(n,stop - start)) #至少21秒

并发运行,不加锁

主线程运行完毕是在所有线程所在的进程内所有非守护线程运行完毕才运行

二、GIL本质是一把互斥锁,将并发转成串行,以此来控制同一时间内共享数据只能被一个任务修改,

     进而保证数据的安全

from threading import Thread,currentThread,Lock
import time
n=100
def work():
time.sleep(2)
global n
time.sleep(0.5)
mutex.acquire()
temp=n
time.sleep(0.1)
n=temp-1
mutex.release()
if __name__ == '__main__':
mutex=Lock()
t1=Thread(target=work)
t2=Thread(target=work)
t3=Thread(target=work)
t1.start()
t2.start()
t3.start()

三、多线程性能测试

(1)'''
多进程
优点:可以利用多核
缺点:开销大 多线程
优点:开销小
缺点:不可以利用多核
'''
from multiprocessing import Process
from threading import Thread
import time
def work():
res=0
for i in range(10000000):
res+=i if __name__ == '__main__':
l=[]
start=time.time()
for i in range(4):
# p=Process(target=work) #0.9260530471801758
p=Thread(target=work) #0.9260530471801758
l.append(p)
p.start() for p in l:
p.join() stop=time.time()
print('%s' %(stop-start))

计算机密集型--开启多进程

from multiprocessing import Process
from threading import Thread
import time
def work():
time.sleep(2) if __name__ == '__main__':
l=[]
start=time.time()
for i in range(400):
p=Process(target=work)
# p=Thread(target=work)
l.append(p)
p.start() for p in l:
p.join() stop=time.time()
print('%s' %(stop-start))

I/O密集型---开启多线程

(2)应用:

             多线程用于IO密集型,如socket,爬虫,web
            多进程用于计算密集型,如金融分析

四、死锁与递归锁

死锁:

from threading import Thread,RLock
import time
mutexA=RLock()
class MyThread(Thread):
def run(self):
self.f1()
self.f2()
def f1(self):
mutexA.acquire()
print('%s 拿到A锁'%self.name)
mutexA.acquire()
print('%s 拿到B锁' % self.name)
mutexA.release()
mutexA.release()
def f2(self):
mutexA.acquire()
print('%s 拿到A锁' % self.name)
time.sleep(1)
mutexA.acquire()
print('%s 拿到B锁' % self.name)
mutexA.release()
mutexA.release()
if __name__ == '__main__':
for i in range(10):
t=MyThread()
t.start()

解决死锁的方法

递归锁:用RLock代替Lock

 from threading import Lock,Thread,RLock
import time
# mutexA=Lock()
# mutexB=Lock()
mutexB=mutexA=RLock()
class MyThread(Thread):
def run(self):
self.f1()
self.f2()
def f1(self):
mutexA.acquire()
print('\033[32m%s 拿到A锁' %self.name)
mutexB.acquire()
print('\033[45m%s 拿到B锁' %self.name)
mutexB.release()
mutexA.release()
def f2(self):
mutexB.acquire()
print('\033[32m%s 拿到B锁' %self.name)
time.sleep(1)
mutexA.acquire()
print('\033[45m%s 拿到A锁' %self.name)
mutexA.release()
mutexB.release()
if __name__ == '__main__':
for i in range(10):
t=MyThread()
t.start()

递归锁

五、信号量

信号量和进程一样

信号量就是一把锁,可以有多把钥匙

from threading import Thread,Semaphore,currentThread
import time,random
sm=Semaphore(5)
def task():
sm.acquire()
print('%s 上厕所' %currentThread().getName())
time.sleep(random.randint(1,3))
print('%s 走了' %currentThread().getName())
sm.release()
if __name__ == '__main__':
for i in range(20):
t=Thread(target=task)
t.start()

六、事件

Event

vent.isSet():返回event的状态值;
event.wait():如果 event.isSet()==False将阻塞线程;
event.set(): 设置event的状态值为True,所有阻塞池的线程激活进入就绪状态, 等待操作系统调度;
event.clear():恢复event的状态值为False。
from threading import Thread,currentThread,Event
import time
e=Event()
def traffic_ligths():
time.sleep(1)
e.set()
def car(): print('\033[45m%s等'%currentThread().getName())
e.wait()
print('\033[43m%s开'%currentThread().getName())
if __name__ == '__main__':
print('绿灯')
for i in range(10):
p=Thread(target=car)
p.start()
# print('绿灯')
time.sleep(5)
print('红灯')
traffic_ligth=Thread(target=traffic_ligths)
traffic_ligth.start()

红绿灯事列


from threading import Thread, currentThread, Event
import time
e = Event()
def conn_mysql():
count = 1
while not e.is_set():
if count > 3:
raise ConnectionError('尝试链接的次数太多了')
print('\033[45m%s 第%s次尝试' % (currentThread().getName(), count))
e.wait(timeout=1)
count += 1
print('\033[45m%s 开始链接' %currentThread().getName())
def check_myql():
print('\033[45m%s 开始检测 my_sql....' %currentThread().getName())
time.sleep(2)
e.set()
if __name__ == '__main__':
for i in range(2):
p = Thread(target=conn_mysql)
p.start()
p = Thread(target=check_myql)
p.start()

链接——sql

七、定时器

定时器,是n秒后执行操作

rom threading import Timer

def hello(n):
print("hello, world",n) t = Timer(3, hello,args=(123,))
t.start() # after 1 seconds, "hello, world" will be printed

定时器

八、线程queue

queue队列,用法与进程queue一样

q=queue.queue()  先进先出

q=queue.Queue(3) #先进先出
q.put('first')
q.put('second')
q.put('third')
# q.put('fourth') print(q.get())
print(q.get())
print(q.get())

q=queue.LifoQueue()   先进后出

q=queue.LifoQueue() #先进后出
q.put('first')
q.put('second')
q.put('third')
# q.put('fourth') print(q.get())
print(q.get())
print(q.get())
put进入一个元组,元组的第一个元素是优先级(通常是数字,也可以是非数字之间的比较),数字越小优先级越高
import queue
q=queue.PriorityQueue()
q.put((20,'a'))
q.put((10,'b'))
q.put((30,'c'))
print(q.get())
print(q.get())
print(q.get())

---恢复内容结束---

python并发编程之协程的更多相关文章

  1. python并发编程之协程知识点

    由线程遗留下的问题:GIL导致多个线程不能真正的并行,CPython中多个线程不能并行 单线程实现并发:切换+保存状态 第一种方法:使用yield,yield可以保存状态.yield的状态保存与操作系 ...

  2. 32 python 并发编程之协程

    一 引子 本节的主题是基于单线程来实现并发,即只用一个主线程(很明显可利用的cpu只有一个)情况下实现并发,为此我们需要先回顾下并发的本质:切换+保存状态 cpu正在运行一个任务,会在两种情况下切走去 ...

  3. 四 python并发编程之协程

    一 引子 本节的主题是基于单线程来实现并发,即只用一个主线程(很明显可利用的cpu只有一个)情况下实现并发,为此我们需要先回顾下并发的本质:切换+保存状态 cpu正在运行一个任务,会在两种情况下切走去 ...

  4. python并发编程之协程(实践篇)

    一.协程介绍 协程:是单线程下的并发,又称微线程,纤程.一句话说明什么是线程:协程是一种用户态的轻量级线程,即协程是由用户程序自己控制调度的. 对于单线程下,我们不可避免程序中出现io操作,但如果我们 ...

  5. 第十篇.5、python并发编程之协程

    一 引子 本节的主题是基于单线程来实现并发,即只用一个主线程(很明显可利用的cpu只有一个)情况下实现并发,为此我们需要先回顾下并发的本质:切换+保存状态 cpu正在运行一个任务,会在两种情况下切走去 ...

  6. 第 12 章 python并发编程之协程

    一.引子 主题是基于单线程来实现并发,即只用一个主线程(很明显可利用的cpu只用一个)情况下实现并发,并发的本质:切换+保存状态 cpu正在运行一个任务,会在两种情况下切走去执行其他的任务(切换由操作 ...

  7. 37、python并发编程之协程

    目录: 一 引子 二 协程介绍 三 Greenlet 四 Gevent介绍 五 Gevent之同步与异步 六 Gevent之应用举例一 七 Gevent之应用举例二 一 引子 本节的主题是基于单线程来 ...

  8. python 并发编程之协程

    一.协程 协程: 单线程下的并发,又称 微线程.协程是一种用户态的的轻量级线程,即协程是由用户程序自己控制调度的. ​ 协程的本质就是在单线程下,由用户自己控制一个任务,遇到 io 阻塞就切换另外一个 ...

  9. python全栈开发从入门到放弃之socket并发编程之协程

    一.为什么会有协程 本节的主题是基于单线程来实现并发,即只用一个主线程(很明显可利用的cpu只有一个)情况下实现并发,为此我们需要先回顾下并发的本质:切换+保存状态 cpu正在运行一个任务,会在两种情 ...

随机推荐

  1. Python beautifulsoup 选择器 select 选择<meta/>等不需要成对结尾标签未写‘/’

    一些不需要成对的标签<meta/> <img/>d等使用bs4的css选择器时出现的情况: 选择某一标签,输出内容超出范围过多 from bs4 import Beautifu ...

  2. JAVAWEB项目如何实现验证码 (转)

    JAVAWEB项目如何实现验证码 2012-12-21 21:19 56026人阅读 评论(36) 收藏 举报 .embody { padding: 10px 10px 10px; margin: 0 ...

  3. 基于轻量级ORM框架Dapper的扩展说明

    这里简单的介绍一下本人基于Dapper作的一些简单的扩展,供大家参考. 为何要使用这款框架,相信大家看到下面排名就清楚了 其实在各大网站上,我们大概都会看到这样的一个对比效果图,在超过500次poco ...

  4. codeforces 466d Increase Sequence

    D. Increase Sequence time limit per test 1 second memory limit per test 256 megabytes input standard ...

  5. Java面向对象-方法的值传递和引用传递

    Java面向对象-方法的值传递和引用传递 0 发布时间:『 2016-08-21 14:21』  博客类别:Java核心基础  阅读(197) 评论(0) Java面向对象-方法的值传递和引用传递 方 ...

  6. appium 判断app是否安装

    #coding:utf-8 #Import the common package import os import unittest from appium import webdriver from ...

  7. python 小技巧 防止SSL报错信息

    代码里面 只需要添加如下2行: import ssl ssl._create_default_https_context = ssl._create_unverified_context

  8. Begin the new life as a coder

    今天刚刚开通博客园的博客频道,这里将成为自我成长点滴记录的土壤!从今天开始,从这篇博文开始,我将分享自己从一个fresher开始的成长经历.原与广大仁人志士共同在程序中共享快乐!我真是太高兴了 :D

  9. 基于FPGA的Sobel边缘检测的实现

    前面我们实现了使用PC端上位机串口发送图像数据到VGA显示,通过MATLAB处理的图像数据直接是灰度图像,后面我们在此基础上修改,从而实现,基于FPGA的动态图片的Sobel边缘检测.中值滤波.Can ...

  10. Redis单机版和集群版的安装和部署

    1.单机版的安装 本次使用redis3.0版本.3.0版本主要增加了redis集群功能. 安装的前提条件: 需要安装gcc:yum install gcc-c++ 1.1 安装redis 1.下载re ...