阅读器

为了适应移动终端的各种分辨率大小,各种屏幕宽高比,在 Cocos2D-X(当前稳定版:2.0.4) 中,提供了相应的解决方案,以方便我们在设计游戏时,能够更好的适应不同的环境。

 
而在设计游戏之初,决定着我们屏幕适配的因素有哪些?简而言之只有两点:屏幕大小和宽高比。这两个因素是如何影响游戏的呢?
 
    •屏幕大小: 从小分辨率 480×320 到 1280×800 分辨率,再到全高清 1080p,从手机到平板,还有苹果设备的 Retina屏,这么多不同的分辨率,而且大小差距甚大,不可能做到一套资源走天下,资源往小了设计,在大屏幕会显示模糊,图片往大了设计,在小屏幕设备又太浪费,而且小屏幕的手机硬件资源也会相对的紧缺,所以 根据屏幕大小使用不同的资源 是有必要的,而 Cocos2D-X 也帮我们解决了这一点。
 
    •宽高比: 什么是宽高比,就是你的屏幕是方的还是长的,靠近方形的分辨率如 480×320,比例为 3:2,还有 960×540 的16:9 标准宽屏,这也算是两种总极端情况了,如果能在这两种比例情况做好适配基本就可以了,如果比 3:2 “更方”如 4:3,比 16:9 “更长”,那么不论如何布局,显示效果差距甚大,最好对固定比例优化吧。当在宽高比在一定范围内,可以通过灵活编写程序去适应,而在显示效果上,Cocos2D-X为我们提供了三种模式,这些 模式更多的是帮我们解决比例不一的情况而存在 的,如果只是屏幕大小(比例一样),那通过简单的放大缩小即可完成。
 
三种模式
 
说是三种模式,其实还有一种“无模式”,也就是 Cocos2D-X默认的适配方案,现在我们就来认识一下这些模式,并且通过这些模式去认识其中一些概念 FrameSize、WinSize、VisibleSize、VisibleOrigin,以及它们存在的意义,并且最后灵活运行这些概念 创建出一个不属于这些模式而超越这些模式的新适配解决方案,这是最终目的。
 
kResolutionUnKnown 认识 FrameSize
 
这是  Cocos2D-X 编写的默认模式,没有做任何处理,在这种情况下,游戏画面的大小与比例都是不可控的,在程序运行之初,由各个平台入口函数定义画面大小:
  1. // proj.linux/main.cpp  linux 平台手动指定画面大小
  2. CCEGLView* eglView = CCEGLView::sharedOpenGLView();
  3. eglView->setFrameSize(720, 480);
  4. // proj.android/jni/hellocpp/main.cpp android 平台由 jni 调用传入设备分辨率参数
  5. void Java_org_cocos2dx_lib_Cocos2dxRenderer_nativeInit(JNIEnv*  env, jobject thiz, jint w, jint h)
  6. {
  7. if (!CCDirector::sharedDirector()->getOpenGLView())
  8. {
  9. CCEGLView *view = CCEGLView::sharedOpenGLView();
  10. view->setFrameSize(w, h);
  11. AppDelegate *pAppDelegate = new AppDelegate();
  12. CCApplication::sharedApplication()->run();
  13. }
  14. else
  15. {
  16. // other
  17. ...
  18. }
  19. }
在此我们首先认识了 FrameSize 参数,在游戏运行时,我们可以通过 CCEGLView::sharedOpenGLView()->getFrameSize();获得此值。如果在手机上运行,那么不同分辨率将会得到不同的值,既然这个值不可控,那么在写游戏中也就没有参考价值了,比如我们写一个精灵的位置距离底部 320 高度,在 480×320 分辨率,能看到其在屏幕上方,如果换一台手机分辨率 960×540 那么只能显示在中间靠上的位置,如果设置精灵位置为距离屏幕上方(高度)320,反之依然,显示效果不一。
 
此时可行的方案是使用百分比,如精灵位置在屏幕横向距离左边 1/3 宽度,在 1/2 正中间处,而类似这样的设置也不用依赖 FrameSize 的具体数值。而这样的做法,使得内部元素像弹簧一样,随着 FrameSize 的大小改变而改变,伸缩或者挤压,对于图片资源大小也是完全不可控,如果根据屏幕大小放大缩小,那我们可以考虑用下面要说的模式,在此不推荐使用  Cocos2D-X 的无模式方案。
 
kResolutionExactFit and kResolutionShowAll 认识 WinSize
 
在 AppDelegate.cpp 处可以通过设置:
  1. CCEGLView::sharedOpenGLView()->setDesignResolutionSize(720, 480, kResolutionShowAll);
  2. // 或者
  3. CCEGLView::sharedOpenGLView()->setDesignResolutionSize(720, 480, kResolutionExactFit);
DesignResolutionSize!顾名思义,也就是逻辑上的游戏屏幕大小,在这里我们设置了其分辨率为 720×480 为例,那么在游戏中,我么设置精灵的位置便可以参照此值,如 左下角 ccp(0,0),右上角 ccp(720, 480),而不论 FrameSize 的大小为多少,是 720×480 也是,是 480×320 也罢,总能正确显示其位置,左下角和右上角。能够实现这一点的原因是,固定了设计分辨率大小,从而确定了其固定的宽高比,它的 优势 是可以使用具体的数值摆放精灵位置,不会因为实际屏幕大小宽高比而是内部元素相对位置关系出现混乱。
 
而为了保持画面的宽高比,Cocos2D-X 做了些牺牲,牺牲了什么呢?kResolutionExactFit 牺牲了画质而保持了全屏显示,对画面进行了拉伸,这意味着什么?意味着相对极端情况下,本来精灵是方形的,显示出来变成长方形,本来圆形的变成了椭圆,固此模式不推荐使用。kResolutionShowAll 为了保持设计画面比例对四周进行留黑边处理,使得不同比例下画面不能全屏。鱼和熊掌不能兼得也。
 
我们可以通过如下方法获取到 setDesignResolutionSize 所设置的值:
  1. CCSize winSize = CCDirector::sharedDirector()->getWinSize();
我们可以用Cocos2D-X 程序是如何开始运行与结束的 一文的方法,跟踪 WinSize 的初始化,获取过程,在这里简单提一下,如下步骤:
  1. // 获得 winSize
  2. CCSize winSize = CCDirector::sharedDirector()->getWinSize();
  3. // 查看其 getWinSize(); 方法实现
  4. [cocos2dx-path]/cocos2dx/CCDirector.cpp
  5. CCSize CCDirector::getWinSize(void)
  6. {
  7. return m_obWinSizeInPoints;
  8. }
  9. // 而 m_obWinSizeInPoints 是何时被赋值的
  10. [cocos2dx-path]/cocos2dx/platform/CCEGLViewProtocol.cpp
  11. void CCEGLViewProtocol::setDesignResolutionSize(float width, float height, ResolutionPolicy resolutionPolicy)
  12. {
  13. ...
  14. ...
  15. m_obDesignResolutionSize.setSize(width, height);
  16. ...
  17. ...
  18. CCDirector::sharedDirector()->m_obWinSizeInPoints = getDesignResolutionSize();
  19. }
  20. const CCSize& CCEGLViewProtocol::getDesignResolutionSize() const
  21. {
  22. return m_obDesignResolutionSize;
  23. }
具体的优势:通过设置逻辑分辨率大小,相比无模式,可以帮我们解决了屏幕自动放大缩小问题,并且保持屏幕宽高比,使得游戏更好设计,可以将设计画面大小作为默认背景图片大小等,唯一点遗憾就是那点前面所提到的一点点牺牲。
 
kResolutionShowAll 方案可以作为我们的默认解决方案,使得游戏的设计更为简化,但为了补填拉伸或留黑边这点缺憾,进入下一个模式!
 
kResolutionNoBorder了解 VisibleSize 与 VisibleOrigin
 
此模式可以解决两个问题,其一:游戏画面全屏;其二:保持设置游戏时的宽高比例,相比 kResolutionShowAll 有所区别的是,为了填补留下的黑边,将画面稍微放大,以至于能够正好补齐黑边,而这样做的后果可想而知,补齐黑边的同时,另一个方向上将会有一部分画面露出屏幕之外,如下示意图:
黑色边框标示实际的屏幕分辨率,紫色区域标示游戏设计大小,而通过放大缩小,保持宽高比固定, 可以看到 Show All 之中的黑色阴影部分为留边,而 No Border 的紫色阴影部分则不能显示,而这紫色区域的大小是游戏设计之时是不可控的。那么原设计的画面大小就失去了 一定的 参考价值了,因为这可能让你的画面显示残缺。这时仅仅通过 WinSize 满足不了我们的设计需求,所以引入了 VisibleSize 与 VisibleOrigin 概念。
 
如上所示,紫色区域是被屏幕截去的部分,不可显示的,根据实际情况,可能出现横向截取和竖向截取,这取决于实际分辨率的宽高比。而 A、B、C、D所标示的是设计分辨率,固定大小。如果我们想让一个精灵元素显示在屏幕上方靠边,那么如果使用 WinSize 的高度设置其位置,可能出现的情况就是显示到屏幕之外了。FrameSize 和 WinSize 我们已经知道其概念,而 VisibleSize 和 VisibleOrigin 所代表的是什么呢,又时如何为我们解决靠边的问题!注意上图下方的定义, VisibleSize = H I J K 是用紫色标注的。 而在上图是 黑色 标注,标示屏幕实际分辨率,虽然 FrameSize 和 VisibleSize 都是 H I J K,但其意义不同,紫色表明它是与设计分辨率相关的。
 
FrameSize 是实际的屏幕分辨率,而 VisibleSize 是在 WinSize 之内,保持 FrameSize 的宽高比所能占用的最大区域,实际屏幕分辨率 H I J K (黑色) 可以大于 WinSize ,但VisibleSize 一定会小于或者等于 WinSize,这两者相同的是宽高比。
 
VisibleSize 有着 WinSize 大小(随WinSize 的大小改变而改变),还有着 FrameSize 的宽高比,它标示 在设计分辨率(WinSize)下,在屏幕中的可见区域大小。 而 VisibleOrigin 则标示在设计分辨率下被截取的区域大小,用点 K 标示,有了这些数据,我们想让游戏元素始终在屏幕显示的区域之内不成难事。下面通过几个数值带入,加深这些概念的印象。
  1. // 组[1] :
  2. FrameSize:            width = 720, height = 420
  3. WinSize:          width = 720, height = 480
  4. VisibleSize:      width = 720, height = 420
  5. VisibleOrigin:        x = 0, y = 30
  6. // 组[2] :相比 组 [1] FrameSize 不变 VisibleSize 和 VisibleOrigin 随着 WinSize 的变小而变小
  7. FrameSize:            width = 720, height = 420
  8. WinSize:          width = 480, height = 320
  9. VisibleSize:      width = 480, height = 280
  10. VisibleOrigin:        x = 0, y = 20
  11. // 组[3] : 相比组 [1] WinSize 不变,VisibleSize 随着 FrameSize 的比例改变而改变
  12. FrameSize:            width = 720, height = 540
  13. WinSize:          width = 720, height = 480
  14. VisibleSize:      width = 640, height = 480
  15. VisibleOrigin:        x = 40, y = 0
  16. // WinSize VisibleSize VisibleOrigin 与都设计的分辨率相关,满足如下关系
  17. WinSize.width = (VisibleOrigin.x * 2) + VisibleSize.width
  18. WinSize.height = (VisibleOrigin.y * 2) + VisibleSize.height
NoBorder 具体的使用方法可以参考 Cocos2D-X 自带例程 TestCpp ,有详细的使用方法,并且封装了 VisibleRect 类,可以获取设计分辨率,不同比例屏幕之时的主要参考点,屏幕四个拐角,和边的中点等,让我们设置元素位置时,使其总能显示在屏幕之内,这里就不详细介绍了。
 
基于这几种模式的程序使用方法, Cocos2D-X 自带例程或者网上有很多教程,这里只详细解释了其中各种概念,而知道了这些概念,当然用起来就没有多大问题了。
 
kResolutionLeafsoar
 
!!!这是什么模式!好吧,Leafsoar 是 一叶 的 ID ,或者是本博客的一级域名而已 :P 在 cocos2d-x 中并没有这种模式。除却 UnKnown 与 ExactFit 不说,ShowAll 的优势是,只需要一个设计分辨率,然后通过 WinSize 设置相对对位即可,而且位置的最大长宽都是确定,方便了开发,但屏幕不能填满, NoBorder 模式的优势是在画面不变形的情况下,实现全屏,显示效果更好,但 WinSize 一定程度失效,需要通过运行时计算 VisibleSize 和 VisibleOrigin 来设置位置,由于是运行时计算,所以也就会出现,各种屏幕显示效果不一样的情况。
 
ShowAll 和 NoBorder 各有所长,各有所短,而这里提出的新适配解决方案正是取两者之长,舍两者之短的组合模式。简单说来就是用 NoBorder 去实现 ShowAll 的思想。NoBorder 可以保证全屏利用,ShowAll 可以更好的使用实际设计坐标固定位置,而且相对位置不会随宽高比的改变而改变,这在编写游戏的时候能方便不少。先上一个示意图,一目了然 (两个图,两个方向):
 
在原来 NoBorder 模式示意图上添加了新的概念,LsSize = X Y M N (leafsoar 简写了,为了不跟  Cocos2D-X 的一些概念混淆,什么名字不重要,只要了解其含义即可),在 NoBorder 模式下的 LsSize 相对于 FrameSize 而言,正如 在 ShowAll 模式下的 WinSize 相对于 FrameSize,所以说这是 ShowAll NoBorder 的组合概念,而这里的 LsSize 与 WinSize 的宽高比是一致的
 
猛地一看,似乎把问题复杂化了,仔细一看,还不如猛地一看 ~~
 
在 ShowAll 中,WinSize 作为最高的宽高,以此参照设置位置,因为在此范围内都能在屏幕上显示,用了 NoBorder 使得四周可能被截去一块区域,而这个区域大小不可控制,所以不能再使用 WinSize 作为参考点来设置位置,而这里的 LsSize 同样,因为 LsSzie 不论在什么情况下,总能显示在屏幕之内,我们可以方便的使用 LsSize 作为坐标系参考,并且可以全屏显示,在配合 VisibleSize ,相比纯的 NoBorder 加强了不少。它可以怎么用?
 
可以把 LsSize 当作 ShowAll 中的 WinSize 来用,而黑边可以使用稍大的图片填充,或者使用其它图片修饰边框,修饰的边框图案可大可小,可长可短,填充屏幕,保持全屏。
 
开始基于 LsSize 的游戏设计实现
 
为了能够准确实现基于 LsSize 的设计,初步计划将 LsSize 设定在 480×320 的分辨率方案,为此做了些准备,首先不使用任何模式情况下,在场景内调用如下:
  1. CCSize size = CCDirector::sharedDirector()->getWinSize();
  2. CCPoint center = ccp(size.width/2, size.height/2);
  3. // 大小 600x500 为了 NoBorder 看到效果,使用稍大的背景图
  4. CCSprite* pb = CCSprite::create("Back.jpg");
  5. pb->setPosition(center);
  6. this->addChild(pb, 0);
  7. // 480x320 此图为使用于设计分辨率 LsSize 的图片
  8. CCSprite* pSprite = CCSprite::create("HelloWorld.png");
  9. pSprite->setPosition(center);
  10. this->addChild(pSprite, 0);
  11. // 37x37 在 480x320 画面的四个拐角处,添加参照
  12. CCSprite* p1 = CCSprite::create("Peas.png");
  13. p1->setPosition(ccpAdd(center, ccp(-240, -160)));
  14. this->addChild(p1);
  15. CCSprite* p2 = CCSprite::create("Peas.png");
  16. p2->setPosition(ccpAdd(center, ccp(240, 160)));
  17. this->addChild(p2);
  18. CCSprite* p3 = CCSprite::create("Peas.png");
  19. p3->setPosition(ccpAdd(center, ccp(-240, 160)));
  20. this->addChild(p3);
  21. CCSprite* p4 = CCSprite::create("Peas.png");
  22. p4->setPosition(ccpAdd(center, ccp(240, -160)));
  23. this->addChild(p4);
显示效果:(FrameSize = 640×540) 
 
显示效果:(ShowAll; FrameSize = 520×320; WinSize = 480×320) 
 
 显示效果:(NoBorder; FrameSize = 520×320; WinSize = 480×320) 
 
通过效果我们可以看到,在相同 FrameSize 下 NoBorder 时,画面由于填充了黑边,将画面放大,以至于上下有部分显示不全,通过拐角四个精灵可以看出。
 
好!既然我们知道是由于放大所致,那么我们将画面缩小呢?cocos2d-x 提供了一个方法,我们调用如下代码:
  1. CCDirector *pDirector = CCDirector::sharedDirector();
  2. pDirector->setContentScaleFactor(
  3. CCEGLView::sharedOpenGLView()->getScaleY() );
为了弥补画面因需要不填空白出现的方法,我们将画面缩小,放大系数可以通过 CCEGLView::sharedOpenGLView()->getScaleY() 取得。其实 setContentScaleFactor 方法是为了适配不同资源而设计的,可以用此方法对不同资源适配,缩放等。效果如下:
 
我们看到 480×320 的图片显示完全正确了,也正是我们想要的效果,但唯一的缺点是 ~~ 拐角处四个精灵的位置依然不是我们想要的,我们设计的位置是以 480×320 设置位置的,而 WinSize 也是 480×320 ,而此时基于 480×320 的设计必然会显示到屏幕之外,而要想不修改精灵位置,而让其显示正确的位置,那么为了保证 LsSize 的固定,我们需要一个方法,那就是动态设置 WinSize
 
什么意思?我们知道一般这些模式设计游戏时,是通过 setDesignResolutionSize 设置 WinSize 的,这个值在游戏运行其间是定植,动态改变的是 VisibleSize 等,而这里提出了 LsSize 的概念,可想而知,如果 WinSize 固定,那么 LsSize 会随着屏幕宽高比的改变而改变,那么我们反其道而行,固定 LsSize 值,那么在运行时可以通过实际的宽高比来算得 WinSize 的值,这样动态算得的 WinSize 值就能够保证我们的 LsSize 是一个定值了。
 
相对论,WinSize 与 LsSize 的值是相对的,与其通过固定 WinSize 在运行时动态获得 LsSize (这也是 NoBorder 的默认方式,而导致的结果是 WinSize 没有参考价值),不如我们固定 LsSize 而在运行时算得 WinSize 设置来的要更妙一些。
 
现在不使用 setContentScaleFactor 方法,而修改 setDesignResolutionSize 这里的值,我们知道 WinSize 是 480×320 时,LsSize 必然会小于此值,而 NoBorder 的放大系数我们可以通过如下方式算得(可以参考setDesignResolutionSize方法内部实现),并在 AppDelegate 里执行:
  1. CCSize frameSize = CCEGLView::sharedOpenGLView()->getFrameSize();
  2. // 设置 LsSize 固定值
  3. CCSize lsSize = CCSizeMake(480, 320);
  4. float scaleX = (float) frameSize.width / lsSize.width;
  5. float scaleY = (float) frameSize.height / lsSize.height;
  6. // 定义 scale 变量
  7. float scale = 0.0f; // MAX(scaleX, scaleY);
  8. if (scaleX > scaleY) {
  9. // 如果是 X 方向偏大,那么 scaleX 需要除以一个放大系数,放大系数可以由枞方向获取,
  10. // 因为此时 FrameSize 和 LsSize 的上下边是重叠的
  11. scale = scaleX / (frameSize.height / (float) lsSize.height);
  12. } else {
  13. scale = scaleY / (frameSize.width / (float) lsSize.width);
  14. }
  15. CCLog("x: %f; y: %f; scale: %f", scaleX, scaleY, scale);
  16. // 根据 LsSize 和屏幕宽高比动态设定 WinSize
  17. CCEGLView::sharedOpenGLView()->setDesignResolutionSize(lsSize.width * scale,
  18. lsSize.height * scale, kResolutionNoBorder);
显示效果:(NoBorder 模式 ;FrameSize = 520×320; LsSize = 480×320; WinSize = 动态获取) 
 
我们看到在没有修改源代码,并且在设计中使用 480×320 的参考系,也既是基于 LsSize 的设计显示效果如我们预期,那么我们换一个 FrameSize 来看看是否能够自动适应呢?如下:
 
显示效果:(NoBorder 模式 ;FrameSize = 600×480; LsSize = 480×320; WinSize = 动态获取) 
到此,基于 LsSize 参考系的游戏设计已经完成了,这样做的好处是很明显的,集 ShowAll 和 NoBorder 的优点于一处,这里的图片元素是为了好定位,实现的需要而写的,具体场景可以使用背景地图,或一张大的图片显示,而没有任何影响,也可以继续使用 VisibleSize 得到 LsSize 之外的部分区域大小,在 LsSize 之外可以使用背景图片作为装饰,即保证了游戏的全屏,又保证了游戏设计时的方便,如果使用完全基于 LsSize 的设计实现,除了显示背景装饰之外,我们不想让 LsSize 的内部元素显示到 LsSize 之外如何做呢?我们只需要设定 LsSize 层的的显示区域即可,我们可以修改场景的实现:
  1. // 这里先简单实现思路
  2. CCScene* HelloWorld::scene() {
  3. CCScene *scene = CCScene::create();
  4. // 创建背景层
  5. CCLayer* b = CCLayer::create();
  6. scene->addChild(b);
  7. // 添加背景图片和设置位置,可以使用其它装饰,或者小图片屏幕都行
  8. CCSize size = CCDirector::sharedDirector()->getWinSize();
  9. CCPoint center = ccp(size.width/2, size.height/2);
  10. CCSprite* pb = CCSprite::create("Back.jpg");
  11. pb->setPosition(center);
  12. b->addChild(pb, 0);
  13. // 创建 LsLayer 层
  14. HelloWorld *lsLayer = HelloWorld::create();
  15. scene->addChild(lsLayer);
  16. return scene;
  17. }
  18. // 在 HelloWorld 中重写 visit() 函数 设定显示区域
  19. void HelloWorld::visit() {
  20. glEnable(GL_SCISSOR_TEST);              // 开启显示指定区域
  21. // 在这里只写上固定值,在特性环境下,以便快速看效果,实际的值,需要根据实际情况算得
  22. glScissor(20, 0, 480, 320);     // 只显示当前窗口的区域
  23. CCLayer::visit();                       // 调用下面的方法
  24. glDisable(GL_SCISSOR_TEST);             // 禁用
  25. }
显示效果:(NoBorder 模式 ;FrameSize = 520×320; LsSize = 480×320; WinSize = 动态获取)
 
屏幕适配新解
 
看完这篇文章想必对Cocos2D-X的屏幕适配方案及其原理有了相当的认识,从内部提供的三种模式,再到我们自定义基于 LsSize 的 Leafsoar 模式 (好吧,因该叫做 ShowAllNoBorder)。这里已经给出了完全的实现原理以及实现方法,并配有效果图,当然这其中还有些细节需要注意,比如我们基于 LsSize 的大小设计,那么实际的图片肯定需要比 LsSize 的要大,大多少,太小了不够适应,太大了又浪费,如何取舍等问题,这一点取决的因素是什么,留给读者思考。
 
一叶将在 GitHub 处建立一个ScreenSolutions 项目,读者可以从这里参考实现的方案。(也许此时在 GitHub 所看到的实现并不完全,但已经有了简单的实现方法,并且能够运行,如有必要,将会新写一篇博客,去实现 ScreenSolutions 并且解说)。

Cocos2D-X屏幕适配新解的更多相关文章

  1. Cocos2d-x——Cocos2d-x 屏幕适配新解 – 兼容与扩展【转载】

    Cocos2d-x 屏幕适配新解 – 兼容与扩展 本文出自[无间落叶](转载请保留出处):http://blog.leafsoar.com/archives/2013/05-13-08.html 在读 ...

  2. Cocos2d-x——Cocos2d-x 屏幕适配新解【转载】

    Cocos2d-x 屏幕适配新解 本文出自[无间落叶](转载请保留出处):http://blog.leafsoar.com/archives/2013/05-10-19.html 为了适应移动终端的各 ...

  3. cocos2d-x 屏幕适配新解

    转自:http://blog.leafsoar.com/archives/2013/05-10-19.html 为了适应移动终端的各种分辨率大小,各种屏幕宽高比,在 cocos2d-x(当前稳定版:2 ...

  4. Cocos2d-x 屏幕适配新解(比较全面比较详细)

    本文出自 [无间落叶]原文地址:http://blog.leafsoar.com/archives/2013/05-10-19.html 为了适应移动终端的各种分辨率大小,各种屏幕宽高比,在 coco ...

  5. Cocos2d-JS的屏幕适配方案

    Cocos2d引擎为游戏开发者提供了屏幕适配策略(Resolution Policy)解决方案. 使用方式 1. 设置屏幕适配策略(Resolution Policy) 如果你还没有用过Resolut ...

  6. 关于Unity中的屏幕适配

    一.Game视图的屏幕分辨率可以先自定义添加,供以后选择,以下是手游经常用到的分辨率: 1.1136X640,iPhone5 2.1920X1080,横屏,主流游戏都是这个分辨率 3.1080X192 ...

  7. Android屏幕适配笔记

    1.限定符 为了适配不同屏幕大小的android手机或android平板,有时候就需要利用限定符来为不同的屏幕设定不同的布局文件,在一般情况下我们都是在layout文件夹下为某个活动准备一个默认的布局 ...

  8. iOS开发点滴:iPhone屏幕适配

    最近开始做iOS开发,遇到一些小问题和解决方法,记录下.   今天是iPhone屏幕适配 iPhone5出来之后屏幕就有iPhone就有了2种尺寸:3.5寸和4寸,xcode 5 的IB设计器里面界面 ...

  9. IOS开发之绝对布局和相对布局(屏幕适配)

    之前如果做过Web前端页面的小伙伴们,看到绝对定位和相对定位并不陌生,并且使用起来也挺方便.在IOS的UI设计中也有绝对定位和相对定位,和我们的web前端的绝对定位和相对定位有所不同但又有相似之处.下 ...

随机推荐

  1. python基于万象优图识别图片中的中文

    最近一直在研究光学字符识别,即OCR.最开始在谷爹那里了解到了开源的Tesseract,可以拿来识别简单的英文和数字.但是识别中文的准确率并不高. 然后从Tesseract到Tesseract.js, ...

  2. python虚拟环境的安装配置

    安装 使用pip安装     pip install virtualenv 因为已经安装过了,所以显示这样 在这里我想在这里推荐大家以后再安装类库时可以用豆瓣源来安装,速度很快,因为在国内访问 官方p ...

  3. CentOS 6.2下搭建Web服务器

    1Centos 6.2下搭建web服务器 如今,Linux在Web应用越来越广,许多企业都采用Linux来搭建Web服务器,这样即节省了购买正版软件的费用,而且还能够提高服务器的安全性. 之前我们介绍 ...

  4. C GOTO使用示例

    GOTO虽然会破坏程序的结构,使用代码可读性变差,但是GOTO依然还是有可用的地方 #include <stdio.h>#include <stdbool.h> int mai ...

  5. RabbitMQ 笔记-基本概念

    ConnectionFactory.Connection.Channel ConnectionFactory.Connection.Channel,这三个都是RabbitMQ对外提供的API中最基本的 ...

  6. jstl 处理字符串

    1.引入 <%@ taglib uri="http://java.sun.com/jsp/jstl/functions" prefix="fn"%> ...

  7. LeetCode 604. Design Compressed String Iterator (设计压缩字符迭代器)$

    Design and implement a data structure for a compressed string iterator. It should support the follow ...

  8. 解析 .Net Core 注入 (3) 创建对象

    回顾 通过前两节的学习,我们知道 IServiceCollection 以元数据(ServiceDescriptor)的形式存放着用户注册的服务,它的 IServiceCollection 的拓展方法 ...

  9. POJ 3468 A Simple Problem with Integers(树状数组区间更新) 续

    这个题刚开始的时候是套模板的,并没有真的理解什么树状数组的区间更新,这几天想了一下,下面是总结: 区间更新这里引进了一个数组delta数组,delta[i]表示区间 [i, n] 的共同增量,每次你需 ...

  10. Power Strings(KMP)

    Power Strings Time Limit: 3000MS   Memory Limit: 65536K Total Submissions: 45008   Accepted: 18794 D ...