简单的LCA
这么久了才做LCA的题,以前是感觉很难不敢去尝试,现在学习了一番之后发现算法本身并不难。。。。
学习时看了这篇博文:https://www.cnblogs.com/JVxie/p/4854719.html, 我觉得实现的过程最重要,就把博文中Tarjan算法实现的方法以及伪代码贴到下面:
Tarjan算法的基本思路:
1.任选一个点为根节点,从根节点开始。
2.遍历该点u所有子节点v,并标记这些子节点v已被访问过。
3.若是v还有子节点,返回2,否则下一步。
4.合并v到u上。
5.寻找与当前点u有询问关系的点v。
6.若是v已经被访问过了,则可以确认u和v的最近公共祖先为v被合并到的父亲节点a。
遍历的话需要用到dfs来遍历,至于合并,最优化的方式就是利用并查集来合并两个节点。
下面上伪代码:
Tarjan(u)//marge和find为并查集合并函数和查找函数
{
for each(u,v) //访问所有u子节点v
{
Tarjan(v); //继续往下遍历
marge(u,v); //合并v到u上
标记v被访问过;
}
for each(u,e) //访问所有和u有询问关系的e
{
如果e被访问过;
u,e的最近公共祖先为find(e);
}
}
算法的运用以及实现过程的举例,博文中讲的很详细,我想补充一下我对Tarjan算法的理解,
当程序在dfs过程中遍历到某个节点 N 时, 以 N 节点为根节点搜索它的子节点,在它的某一子节点或某一子树都遍历过后,遍历过的点的父节点都会变成节点 N。那么假设N的子树中 i 节点被遍历了,其父节点变成N ; 遍历到其他子节点 j 时, 若恰好存在询问 i , j ,且 i , j 都在以 N 为根的树内,那么就可以直接得到 i, j 的LCA为 N 节点。那么在一次dfs过程中就都得到了所有询问的LCA
以下是两道例题的AC代码:
CODEVS 2370 小机房的树
#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
using namespace std;
const int MAXN=;
struct Edge{
int to;
int cost;
int id;
};
vector<Edge> vec[MAXN];
vector<Edge> Q[MAXN];
bool vis[MAXN];
int p[MAXN], res[MAXN];
long long d[MAXN], resd[MAXN];
void add_edge(int u, int v, int c){
vec[u].push_back((Edge){v, c, -});
vec[v].push_back((Edge){u, c, -});
}
void add_query(int a, int b, int id){
Q[a].push_back((Edge){b, , id});
Q[b].push_back((Edge){a, , id});
}
int find(int x){
return (p[x]==x)?x:(p[x]=find(p[x]));
}
void Union(int x, int y)
{
x=find(x);
y=find(y);
if(x==y) return;
else p[x]=y;
}
void tarjan(int now, int fa)
{
for(int i=;i<vec[now].size();i++){
Edge e=vec[now][i];
if(!vis[e.to]&&e.to!=fa){
/**/
d[e.to]=d[now]+e.cost;
/**/
tarjan(e.to, now);
Union(e.to, now);//注意now 和 e.to 的顺序 }
}
for(int i=;i<Q[now].size();i++){
Edge e=Q[now][i];
if(vis[e.to]){
res[e.id]=find(e.to);
resd[e.id]=d[e.to]+d[now]-*d[res[e.id]];
}
}
vis[now]=;
}
int main()
{
int n,m,a,b,c;
while(~scanf("%d", &n))
{
for(int i=;i<=n;i++) p[i]=i;
for(int i=;i<n-;i++){
scanf("%d %d %d", &a, &b, &c);
add_edge(a, b, c);
}
scanf("%d", &m);
for(int i=;i<m;i++){
scanf("%d %d", &a, &b);
add_query(a, b, i);
} memset(vis, , sizeof(vis));
memset(d, , sizeof(d));
tarjan(, -);
for(int i=;i<m;i++){
printf("%lld\n", resd[i]);
}
}
}
/*
9
1 2 0
1 3 0
2 4 0
2 5 0
3 6 0
5 7 0
5 8 0
7 9 0
4
9 8
4 6
7 5
5 3
*/
CODEVS 1036 商务旅行
#include<iostream>
#include<cstring>
#include<cstdio>
#include<vector>
using namespace std;
const int MAXN=;
struct Edge{
int to;
int cost;
int id;
};
vector<Edge> vec[MAXN];
vector<Edge> Q[MAXN];
bool vis[MAXN];
int p[MAXN], res[MAXN];
long long d[MAXN], resd[MAXN];
void add_edge(int u, int v, int c){
vec[u].push_back((Edge){v, c, -});
vec[v].push_back((Edge){u, c, -});
}
void add_query(int a, int b, int id){
Q[a].push_back((Edge){b, , id});
Q[b].push_back((Edge){a, , id});
}
int find(int x){
return (p[x]==x)?x:(p[x]=find(p[x]));
}
void Union(int x, int y)
{
x=find(x);
y=find(y);
if(x==y) return;
else p[x]=y;
}
void tarjan(int now, int fa)
{
for(int i=;i<vec[now].size();i++){
Edge e=vec[now][i];
if(!vis[e.to]&&e.to!=fa){
/**/
d[e.to]=d[now]+e.cost;
/**/
tarjan(e.to, now);
Union(e.to, now);//注意now 和 e.to 的顺序 }
}
for(int i=;i<Q[now].size();i++){
Edge e=Q[now][i];
if(vis[e.to]){
res[e.id]=find(e.to);
resd[e.id]=d[e.to]+d[now]-*d[res[e.id]];
}
}
vis[now]=;
}
int main()
{
int n,m,a,b,c;
while(~scanf("%d", &n))
{
for(int i=;i<=n;i++) p[i]=i;
for(int i=;i<n-;i++){
scanf("%d %d", &a, &b);
add_edge(a, b, );
}
scanf("%d", &m);
scanf("%d", &a);
for(int i=;i<m;i++){
scanf("%d", &b);
add_query(a, b, i);
a=b;
} memset(vis, , sizeof(vis));
memset(d, , sizeof(d));
tarjan(, -);
long long ans=;
for(int i=;i<m;i++){
ans+=resd[i];
}
printf("%lld\n", ans);
}
}
简单的LCA的更多相关文章
- poj 1330 Nearest Common Ancestors (最简单的LCA)
题意: 给出一棵树的结构. 给出两个点X和Y,求它俩的LCA. 思路: 只需求两个点的LCA,用了两种方法,一种离线tarjan,一种直接搞. 看代码. 代码: 方法一:直接搞. int const ...
- [BZOJ1602&BZOJ1787&BZOJ2144]树上LCA的算法巩固练习
简述求LCA的倍增算法 对于树上的所有节点,我们可以很轻松地通过dfs求出其直接的父亲节点以及其深度 通过类似RMQ的原理我们可以处理出每个节点的第2^i个父亲 //这个过程既可以在dfs之后双重循环 ...
- HDU 5266 pog loves szh III 线段树,lca
Pog and Szh are playing games. Firstly Pog draw a tree on the paper. Here we define 1 as the root of ...
- poj2月题解
竟然生日前一天poj破百,不错不错,加速前进! poj2437 由于泥泞不重叠,所以按其实左边排个序再统计一遍即可(如果不是刚好盖满就尽量往后盖) poj2435 细节bfs poj2230 求欧拉回 ...
- P1536 村村通(洛谷)并查集
隔壁的dgdger带我看了看老师的LCA教程,我因为学习数学太累了(就是懒),去水了一下,感觉很简单的样子,于是我也来写(水)个博客吧. 题目描述 某市调查城镇交通状况,得到现有城镇道路统计表.表中列 ...
- 2249: Altruistic Amphibians 01背包的应用 + lh的简单图论 图转树求lca
第一个 写了两个比较简单的数论题目,就是整除理论的两个题目,第一个题目比较蠢,第二个稍微要动一点脑筋 Codeforces Round #347 (Div. 2) – A. Complicated G ...
- poj----1330Nearest Common Ancestors(简单LCA)
题目连接 http://poj.org/problem?id=1330 就是构建一棵树,然后问你两个节点之间最近的公共父节点是谁? 代码: /*Source Code Problem: 1330 U ...
- POJ 2763 Housewife Wind 纯粹LCA写法(简单无脑)
Description After their royal wedding, Jiajia and Wind hid away in XX Village, to enjoy their ordina ...
- (RMQ版)LCA注意要点
inline int lca(int x,int y){ if(x>y) swap(x,y); ]][x]]<h[rmq[log[y-x+]][y-near[y-x+]+]])? rmq[ ...
随机推荐
- DWIN串口屏的使用
学习需要,根据dwin的官方文档及网络资料整理而来. 一. 基础知识理解 1.1.变量地址和描述指针 VP(变量地址)和SP(描述指针)通常是指显示变量功能的两种定义,两者共用0000到6FFF地址 ...
- keras recall
# accuracy, fmeasure, precision,recall def mcor(y_true, y_pred): y_pred_pos = K.round(K.clip(y_pred, ...
- 基于html5二个div 连线
因为要实现拖拽连线研究了一下基于extjs 和html5的不同实现方法 extjs底层的画图引擎是svg 不知道在html5大潮即将袭来的前夕一贯走在技术前沿的extjs开发团队没有自己封装基于htm ...
- xmake新增对Qt编译环境支持
在最新的xmake v2.2.1版本中,新增了对Qt SDK环境的支持,我们完全可以脱离Qt Creater进行Qt应用程序的开发,甚至配合vscode/idea等编辑器+xmake插件(xmake- ...
- Java程序基本框架
对象:对象是类的一个实例,有状态和行为.例如,一条狗是一个对象,它的状态有:颜色.名字.品种:行为有:摇尾巴.叫.吃等. 类:类是一个模板,它描述一类对象的行为和状态.(Java是以类为组织单位) 方 ...
- java常用类详细介绍及总结:字符串相关类、日期时间API、比较器接口、System、Math、BigInteger与BigDecimal
一.字符串相关的类 1.String及常用方法 1.1 String的特性 String:字符串,使用一对""引起来表示. String声明为final的,不可被继承 String ...
- Nginx 1.相关介绍
转 https://www.cnblogs.com/wcwnina/p/8728391.html Nginx的产生 没有听过Nginx?那么一定听过它的"同行"Apache吧!Ng ...
- Linux菜狗入门(不停更新)
资料来源:<腾讯课堂> 1, 计算机硬件包括CPU,内存,硬盘,声卡等等 2, 没有安装操作系统的计算机,通常被称为裸机 如果想在裸机上运行自己所编写的程序,就必须用机器语言书写程序 如果 ...
- navicat和Pycharm的连接
要安装好Mysql,并且实现了Mysql和Navicat的连接: 2.连接界面如下:点击连接,然后点击MySQL就可以看到如下界面 3. 然后就出现新建连接的设置,连接名自己起,用户名和密码和在MyS ...
- php中引入facebook的messenger消息接口
前一段时间需要开发一个messenger的消息接口,但是facebook的官方文档似是而非,而且由于在国内比较小众,之前也没有另外的人写过中文的开发教程,只好自己进行了一番研究并完成了一个demo,希 ...