POJ 3135 Polygons on the Grid(枚举+凸包)
题目大意是让你用这n条边放在网格上构成凸包,并且边的两端点必须在网格上。
那么比较容易想到的就是枚举可能情况,因为这样的勾股数组成情况不多,因此可以直接枚举所有连出去的边反映在坐标轴上的所有情况,最后判断是否回到起点并且绕城一个凸包。
但是样例三每条边有最多36个方向,那么366*6!显然会超时,我们就需要一些剪枝。
1.第一条边固定住,那么我们的枚举边的顺序的复杂度变成了5!.
2.枚举到最后一个点的时候,不需要再将次边连出去判断是否回到起点,直接判断起点到该点的距离是否为这条边的长度即可,复杂度降成365.
3.每次往下搜索的时候都要去判断是否把这个点定住,当前的所有点仍然是一个凸包,因为满足的条件的凸包不多,所以这部分剪枝剪得比较多.
附赠数据:
6
60 203 113 164 169 131
6
185 198 159 109 69 120
6
246 261 281 217 240 225
6
290 124 130 16 112 120
0
41636
37323
125526
32088
// ——By DD_BOND //#include<bits/stdc++.h>
//#include<unordered_map>
//#include<unordered_set>
#include<functional>
#include<algorithm>
#include<iostream>
//#include<ext/rope>
#include<iomanip>
#include<climits>
#include<cstring>
#include<cstdlib>
#include<cstddef>
#include<cstdio>
#include<memory>
#include<vector>
#include<cctype>
#include<string>
#include<cmath>
#include<queue>
#include<deque>
#include<ctime>
#include<stack>
#include<map>
#include<set> #define fi first
#define se second
#define MP make_pair
#define pb push_back
#define INF 0x3f3f3f3f
#define pi 3.1415926535898
#define lowbit(a) (a&(-a))
#define lson l,(l+r)/2,rt<<1
#define rson (l+r)/2+1,r,rt<<1|1
#define Min(a,b,c) min(a,min(b,c))
#define Max(a,b,c) max(a,max(b,c))
#define debug(x) cerr<<#x<<"="<<x<<"\n"; //#pragma GCC optimize(3)
//#pragma GCC target("sse,sse2,sse3,ssse3,sse4,popcnt,abm,mmx,avx,tune=native") using namespace std; typedef long long ll;
typedef pair<int,int> P;
typedef pair<ll,ll> Pll;
typedef unsigned long long ull; const int seed=;
const ll LLMAX=2e18;
const int MOD=1e9+;
const double eps=1e-;
const int MAXN=1e6+;
const int hmod1=0x48E2DCE7;
const int hmod2=0x60000005; inline ll sqr(ll x){ return x*x; }
inline int sqr(int x){ return x*x; }
inline double sqr(double x){ return x*x; }
ll __gcd(ll a,ll b){ return b==? a: __gcd(b,a%b); }
ll qpow(ll a,ll n){ll sum=;while(n){if(n&)sum=sum*a%MOD;a=a*a%MOD;n>>=;}return sum;}
inline int dcmp(double x){ if(fabs(x)<eps) return ; return (x>? : -); } struct Point{
int x,y;
Point(){ x=y=; }
Point(int _x,int _y):x(_x),y(_y){}
inline Point operator -(const Point &n)const{
return Point(x-n.x,y-n.y);
}
inline int operator *(const Point &n)const{
return x*n.x+y*n.y;
}
inline int operator ^(const Point &n)const{
return x*n.y-y*n.x;
}
}; Point loc[];
int n,sum,ans,l[];
vector<Point>vec[]; inline void dfs(int p,int x,int y,int res,int area){
if(p==n-){
if(sqr(l[p])!=x*x+y*y) return ;
ans=max(ans,area/);
}
else{
for(int i=;i<(int)vec[l[p]].size();i++){
if(p==&&(vec[l[p]][i].x<||vec[l[p]][i].y<||vec[l[p]][i].x<vec[l[p]][i].y)) continue;
Point tmp(x+vec[l[p]][i].x,y+vec[l[p]][i].y);
if(p==||(p>=&&
( ((loc[p]-loc[p-])^(tmp-loc[p]))>||( ((loc[p]-loc[p-])^(tmp-loc[p]))==&&((loc[p]-loc[p-])*(tmp-loc[p]))> ) )&&
( ((tmp-loc[p])^(Point(,)-tmp))>||( ((tmp-loc[p])^(Point(,)-tmp))==&&((tmp-loc[p])*(Point(,)-tmp))> ) )&&
( ((Point(,)-tmp)^loc[])>||( ((Point(,)-tmp)^loc[])==&&((Point(,)-tmp)*loc[])> ) )&&
tmp.x*tmp.x+tmp.y*tmp.y<=sqr(sum-res-l[p]) ) ){
int now=area;
loc[p+]=tmp;
if(p>=) now+=loc[p]^loc[p+];
dfs(p+,tmp.x,tmp.y,res+l[p],now);
}
}
}
} int main(void)
{
loc[]=Point(,);
for(int i=-;i<=;i++)
for(int j=-;j<=;j++){
int p=i*i+j*j;
int sq=round(sqrt(p));
if(sq>||sq*sq!=p) continue;
vec[sq].pb(Point(i,j));
}
while(scanf("%d",&n)&&n){
sum=; ans=-;
for(int i=;i<n;i++) scanf("%d",&l[i]),sum+=l[i];
sort(l,l+n);
do{ dfs(,,,,); }while(next_permutation(l+,l+n));
if(ans==) ans=-;
printf("%d\n",ans);
}
return ;
}
POJ 3135 Polygons on the Grid(枚举+凸包)的更多相关文章
- POJ 1873 The Fortified Forest(枚举+凸包)
Description Once upon a time, in a faraway land, there lived a king. This king owned a small collect ...
- POJ.3279 Fliptile (搜索+二进制枚举+开关问题)
POJ.3279 Fliptile (搜索+二进制枚举+开关问题) 题意分析 题意大概就是给出一个map,由01组成,每次可以选取按其中某一个位置,按此位置之后,此位置及其直接相连(上下左右)的位置( ...
- POJ 1873 UVA 811 The Fortified Forest (凸包 + 状态压缩枚举)
题目链接:UVA 811 Description Once upon a time, in a faraway land, there lived a king. This king owned a ...
- poj 1113:Wall(计算几何,求凸包周长)
Wall Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 28462 Accepted: 9498 Description ...
- 【POJ】1228 Grandpa's Estate(凸包)
http://poj.org/problem?id=1228 随便看看就能发现,凸包上的每条边必须满足,有相邻的边和它斜率相同(即共线或凸包上每个点必须一定在三点共线上) 然后愉快敲完凸包+斜率判定, ...
- Poj(3522),UVa(1395),枚举生成树
题目链接:http://poj.org/problem?id=3522 Slim Span Time Limit: 5000MS Memory Limit: 65536K Total Submis ...
- Codeforces Round #249 (Div. 2) D. Special Grid 枚举
题目链接: http://codeforces.com/contest/435/problem/D D. Special Grid time limit per test:4 secondsmemor ...
- poj 3740 Easy Finding 二进制压缩枚举dfs 与 DLX模板详细解析
题目链接:http://poj.org/problem?id=3740 题意: 是否从0,1矩阵中选出若干行,使得新的矩阵每一列有且仅有一个1? 原矩阵N*M $ 1<= N <= 16 ...
- POJ 1753 Flip Game(二进制枚举)
题目地址链接:http://poj.org/problem?id=1753 题目大意: 有4*4的正方形,每个格子要么是黑色,要么是白色,当把一个格子的颜色改变(黑->白或者白->黑)时, ...
随机推荐
- IntelliJ IDEA 2019.3激活破解教程(亲测有效,可激活至 2089 年)
IntelliJ IDEA 2019.3激活破解教程(亲测有效,可激活至 2089 年) 所有软件安装位置,作者均在无中文.无空格目录下进行操作的 IntelliJ IDEA 2019.3激活破解教程 ...
- 解决eclipse部署maven项目无法导入lib的问题
eclipse版本为2018-12(4.10.0) 1.默认tomcat的server配置 改成: 2.项目部署 按上面的配置,项目会部署到你配置的本地tomcat的webapps目录下. 部署了项目 ...
- Nginx的正则表达式
Nginx (engine x) 是一个高性能的HTTP和反向代理服务,也是一个IMAP/POP3/SMTP服务.Nginx是由伊戈尔·赛索耶夫为俄罗斯访问量第二的Rambler.ru站点(俄文:Ра ...
- 基本的axios用法
首先安装axios: 1):npm install 2):npm install vue-axios --save 3):npm install qs.js --save //它的作用是能把json格 ...
- 常用的vi快捷方式
一般情况来说: 0代表行首,$代表行末 $,G代表最后一行 光标移动 0 移动到本行最前面 $ 移动到本行最后 G 移动文件最后一行 nG 移动到文件第n行 gg 移动到文件第一行 n[space]移 ...
- GIT的安装和配置
- Vue使用axios请求数据,默认post请求传参是json格式,但后台需要formData格式???
最简单的方式,post请求参数json转formData…代码如下: 使用node的 qs 模块(推荐使用) 就是这么简单,在结合element ui表单一键提交涉及到,希望遇到的同学少走弯路,加油~
- JSP 不能解析EL表达式的解决办法
原文地址:http://www.jb51.net/article/30791.htm 原因是:在默认情况下,Servlet 2.4 / JSP 2.0支持 EL 表达式. 解决的办法有两种: 1.修改 ...
- webpack4常用片段
webpack 4常用 初始化 npm init // Webpack 4.0以后需要单独安装 npm install webpack webpack-cli --save-dev 基础的config ...
- 【Linux 应用编程】进程管理 - 进程间通信IPC之管道 pipe 和 FIFO
IPC(InterProcess Communication,进程间通信)是进程中的重要概念.Linux 进程之间常用的通信方式有: 文件:简单,低效,需要代码控制同步 管道:使用简单,默认阻塞 匿名 ...