noip2015day2-运输计划
题目描述
公元$ 2044 $年,人类进入了宇宙纪元。
\(L\) 国有 \(n\) 个星球,还有 \(n-1\) 条双向航道,每条航道建立在两个星球之间,这 \(n-1\) 条航道连通了 \(L\) 国的所有星球。
小 \(P\) 掌管一家物流公司,该公司有很多个运输计划,每个运输计划形如:有一艘物流飞船需要从 \(u_i\) 号星球沿最快的宇航路径飞行到 \(v_i\) 号星球去。显然,飞船驶过一条航道 是需要时间的,对于航道\(j\),任意飞船驶过它所花费的时间为 \(t_j\),并且任意两艘飞船之 间不会产生任何干扰。
为了鼓励科技创新,\(L\) 国国王同意小 \(P\) 的物流公司参与 \(L\) 国的航道建设,即允许小 $P $把某一条航道改造成虫洞,飞船驶过虫洞不消耗时间。
在虫洞的建设完成前小 \(P\) 的物流公司就预接了 \(m\) 个运输计划。在虫洞建设完成后, 这 \(m\) 个运输计划会同时开始,所有飞船一起出发。当这 \(m\) 个运输计划都完成时,小 \(P\) 的 物流公司的阶段性工作就完成了。
如果小 \(P\) 可以自由选择将哪一条航道改造成虫洞,试求出小 \(P\) 的物流公司完成阶段性工作所需要的最短时间是多少?
Input
第一行包括两个正整数 \(n、m\),表示 \(L\) 国中星球的数量及小 \(P\) 公司预接的运输计划的数量,星球从 \(1\) 到 \(n\) 编号。
接下来 \(n-1\) 行描述航道的建设情况,其中第 \(i\) 行包含三个整数 \(a_i, b_i\) 和 \(t_i\),表示第\(i\)条双向航道修建在 \(a_i\) 与 \(b_i\) 两个星球之间,任意飞船驶过它所花费的时间为 \(t_i\)。
接下来 \(m\) 行描述运输计划的情况,其中第 \(j\) 行包含两个正整数 \(u_j\) 和 \(v_j\),表示第 \(j\)个 运输计划是从 \(u_j\) 号星球飞往 \(v_j\) 号星球。
数据保证 \(1≤u_i,v_i≤n,1<=n,m<=300000\)
数据保证 \(1≤a_i,b_i≤n\) 且 \(0≤t_i≤1000\)。
Output
输出 共\(1\)行,包含\(1\)个整数,表示小\(P\)的物流公司完成阶段性工作所需要的最短时间。
Sample Input
6 3
1 2 3
1 6 4
3 1 7
4 3 6
3 5 5
3 6
2 5
4 5
Sample Output
11
首先,看到了最大值最小就很自然的想到了二分答案。
嗯,二分是很显然的。。。。
那么,我们该如何\(check\)呢?,对于两点间路径已经小于当前\(x\)的路径可以直接忽视掉。
那么剩下来的路径就是大于当前\(x\)的路径了,对于这些路径我们需要去掉一条边是所有的路径中最大值最小。
即,我们需要减去路径交集中最大的边。
这个操作是很显然的,因为只有减得越多才可以剩的越少。
现在,我们需要做的就是求出所有路径的交集了?
怎么求呢?我们可以利用树上差分来进行求解。
我们需要将边转换到点上,那么我们该如何转换呢?
由于一条边的节点一定是父亲节点和儿子节点之分。
而儿子节点所对应的边只有一条,所以我们将边转移到子节点上。
当加入一条路径\(a,b\)时,设\(LCA\)为\(a,b\)的\(lca\),则\(Sum[a]++,Sum[b]++,Sum[LCA]-=2\)。
我们统计答案时若当前节点的\(Sum\)值为不满足条件的路径个数,说明该节点所对应的边为所有路径的交集,
更新答案即可。。。
最后看一下最长的路径减去路径上的最大值是否\(<=\)当前\(x\)即可。
不过这道题的数据较大,普通的算法容易被卡掉。
那么,我们就需要一些优化。。。
1.优化二分上下界:
\(L=\)最长的路径长度减去最大的边权,\(R=\)最长的路径长度。
这样二分的次数保证在\(10\)以内。
2.避免递归:
由于统计答案时,我们需要递归求解,而递归是有常数的,
我们又发现一个节点的值只和其子树有关,而子树在\(dfs\)序中时保证子节点编号大于根节点编号。
于是,我们可以利用\(dfs\)序倒着更新\(Sum\)值。
代码如下
#include <bits/stdc++.h>
using namespace std;
#define LL long long
#define reg register
#define Raed Read
#define debug(x) cerr<<#x<<" = "<<x<<endl;
#define rep(a,b,c) for(reg int a=(b),a##_end_=(c); a<=a##_end_; ++a)
#define ret(a,b,c) for(reg int a=(b),a##_end_=(c); a<a##_end_; ++a)
#define drep(a,b,c) for(reg int a=(b),a##_end_=(c); a>=a##_end_; --a)
#define erep(i,G,x) for(int i=(G).Head[x]; i; i=(G).Nxt[i])
inline char G1() {
static const int LEN=2000005;
static char U[LEN],*T=U,*E=U;
if(T==E)T=U,E=U+fread(U,1,LEN,stdin);
return T==E?EOF:*T++;
}
inline int Read(void) {
int res=0,f=1;
char c;
while(c=G1(),c<48||c>57)if(c=='-')f=0;
do res=(res<<3)+(res<<1)+(c^48);
while(c=G1(),c>=48&&c<=57);
return f?res:-res;
}
template<class T>inline bool Min(T &a,T const&b) {
return a>b ?a=b,1:0;
}
template<class T>inline bool Max(T &a,T const&b) {
return a<b?a=b,1:0;
}
const int N=3e5+5,M=3e5+5,mod=1e9+7;
bool MOP1;
int n,m,A[N],B[N],TT[M];
struct Link_list {
int Tot,Head[N],to[M<<1],Nxt[M<<1],cost[M<<1];
inline void clear(void) {
Tot=0;
memset(Head,0,sizeof Head);
}
inline void AddEdgepair(int a,int b,int c) {
to[++Tot]=b,cost[Tot]=c,Nxt[Tot]=Head[a],Head[a]=Tot;
to[++Tot]=a,cost[Tot]=c,Nxt[Tot]=Head[b],Head[b]=Tot;
}
} G;
int Fa[M],dep[M],top[M],sz[M],son[M],Dis[M],LCA[N],cnt,Id[N];
void dfs1(int x,int f) {
Id[++cnt]=x;
dep[x]=dep[f]+1,Fa[x]=f,sz[x]=1;
erep(i,G,x) {
int y=G.to[i];
if(y==f)continue;
Dis[y]=Dis[x]+G.cost[i];
TT[y]=G.cost[i];
dfs1(y,x),sz[x]+=sz[y];
if(sz[y]>sz[son[x]])son[x]=y;
}
}
void dfs2(int x,int f) {
top[x]=f;
if(son[x])dfs2(son[x],f);
else return;
erep(i,G,x) {
int y=G.to[i];
if(y==Fa[x]||y==son[x])continue;
dfs2(y,y);
}
}
inline int lca(int x,int y) {
while(top[x]!=top[y]) {
if(dep[top[x]]>dep[top[y]])x=Fa[top[x]];
else y=Fa[top[y]];
}
return dep[x]<dep[y]?x:y;
}
int res,tot,Sum[N];
inline bool check(int x) {
res=-1,tot=0;
rep(i,1,n)Sum[i]=0;
rep(i,1,m) {
if(Dis[A[i]]+Dis[B[i]]-2*Dis[LCA[i]]<=x)continue;
tot++,Sum[A[i]]++,Sum[B[i]]++,Sum[LCA[i]]-=2;
}
drep(i,n,1) {
int u=Id[i];
erep(i,G,u) {
int y=G.to[i];
if(y==Fa[u])continue;
Sum[u]+=Sum[y];
}
if(Sum[u]==tot)Max(res,TT[u]);
}
if(res==-1)return false;
rep(i,1,m) {
if(Dis[A[i]]+Dis[B[i]]-2*Dis[LCA[i]]<=x)continue;
if(Dis[A[i]]+Dis[B[i]]-2*Dis[LCA[i]]-res>x)return false;
}
return true;
}
int Ma;
inline void solve(void) {
int L=0,R=0,Ans=0;
rep(i,1,m)Max(R,Dis[A[i]]+Dis[B[i]]-2*Dis[LCA[i]]);
L=R-Ma;
while(L<=R) {
int mid=(L+R)>>1;
if(check(mid))Ans=mid,R=mid-1;
else L=mid+1;
}
printf("%d\n",Ans);
}
bool MOP2;
inline void _main(void) {
n=Read(),m=Read();
int f=1;
ret(i,1,n) {
int a=Read(),b=Read(),c=Read();
Max(Ma,c),G.AddEdgepair(a,b,c);
}
dfs1(1,0),dfs2(1,1);
rep(i,1,m)A[i]=Read(),B[i]=Read(),LCA[i]=lca(A[i],B[i]);
solve();
}
signed main() {
_main();
return 0;
}
noip2015day2-运输计划的更多相关文章
- bzoj 4326: NOIP2015 运输计划
4326: NOIP2015 运输计划 Time Limit: 30 Sec Memory Limit: 128 MB Description 公元 2044 年,人类进入了宇宙纪元.L 国有 n 个 ...
- noip2015 运输计划
描述 公元 2044 年,人类进入了宇宙纪元.L 国有 nn 个星球,还有 n−1n−1 条双向航道,每条航道建立在两个星球之间,这 n−1n−1 条 航道连通了 L 国的所有星球. 小 P 掌管一家 ...
- 【bzoj4326】[NOIP2015]运输计划
题目描述 公元 2044 年,人类进入了宇宙纪元.L 国有 n 个星球,还有 n−1 条双向航道,每条航道建立在两个星球之间,这 n−1 条航道连通了 L 国的所有星球.小 P 掌管一家物流公司, 该 ...
- [题解]vijos 运输计划
Description 公元 2044 年,人类进入了宇宙纪元.L 国有 n 个星球,还有 n−1 条双向航道,每条航道建立在两个星球之间,这 n−1 条航道连通了 L 国的所有星球.小 P 掌管一家 ...
- NOIP2015 运输计划(bzoj4326)
4326: NOIP2015 运输计划 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 886 Solved: 574[Submit][Status] ...
- UOJ #150 【NOIP2015】 运输计划
题目描述 公元 \(2044\) 年,人类进入了宇宙纪元. \(L\) 国有 \(n\) 个星球,还有 \(n-1\) 条双向航道,每条航道建立在两个星球之间,这 \(n-1\) 条航道连通了 \(L ...
- [bzoj4326][NOIP2015]运输计划
Description 公元2044年,人类进入了宇宙纪元. 国有个星球,还有条双向航道,每条航道建立在两个星球之间,这条航道连通了国的所有星球. 小掌管一家物流公司,该公司有很多个运输计划,每个运输 ...
- 【BZOJ-4326】运输计划 树链剖分 + 树上差分 + 二分
4326: NOIP2015 运输计划 Time Limit: 30 Sec Memory Limit: 128 MBSubmit: 703 Solved: 461[Submit][Status] ...
- [NOIP2015] 提高组 洛谷P2680 运输计划
题目背景 公元 2044 年,人类进入了宇宙纪元. 题目描述 L 国有 n 个星球,还有 n-1 条双向航道,每条航道建立在两个星球之间,这 n-1 条航道连通了 L 国的所有星球. 小 P 掌管一家 ...
- [BZOJ4326][codevs4632][codevs5440][UOJ#150][NOIP2015]运输计划
[BZOJ4326][codevs4632][codevs5440][UOJ#150][NOIP2015]运输计划 试题描述 公元 2044 年,人类进入了宇宙纪元. L 国有 n 个星球,还有 n− ...
随机推荐
- 51 Nod 线段最长重叠部分
1091 线段的重叠 基准时间限制:1 秒 空间限制:131072 KB 分值: 5 难度:1级算法题 X轴上有N条线段,每条线段包括1个起点和终点.线段的重叠是这样来算的,[10 20]和[12 ...
- Codeforces Round #325 (Div. 2) B. Laurenty and Shop 有规律的图 暴力枚举
B. Laurenty and Shoptime limit per test1 secondmemory limit per test256 megabytesinputstandard input ...
- 关于spark与scala版本问题记录
记录一下版本问题: spark与scala版本对应问题: 1.官网会给出,如下,spark2.3.1默认需要scala2.11版本 2.在maven依赖网中也可以看到,如下 3.关于idea开发版本中 ...
- TCP连接数配置
一般的设置规则为: 系统最大文件数>可用端口>用户最大文件数 sysctl -a | grep file-max cat /proc/sys/fs/file-max 这表明这台Linux系 ...
- Ubuntu 16.04配置SSL免费证书
主要参考地址为:https://blog.csdn.net/setoy/article/details/78441613 本篇主要以Apache这个web服务器来讲解,所以前提必须要安装好apache ...
- mybatis逆向工程的text类型的一个小坑
数据库如果配有text的数据类型的 mybatis生成逆向工程的时候会单独将text提取出来 ByExampleWithBLOBs 会生成上面后缀的查询和修改的语句 因此查询起来会产生没有必要的麻烦, ...
- vue项目内嵌入到app input type=file 坑(文件上传插件)
w问题描述: 我用vue-cli完成的一个移动端项目,内嵌到app当中,用原生的input type=file 来完成文件上传.在安卓下没有问题但是在苹果手机 上传第二次手机就会发生白屏 并无缘无故跳 ...
- C# 下载文件的心得
下载文件最常用的有两种: 第一种:直接使用A标签,对应着文件的地址. 第二种:将文件写成流,然后在回传给客户端. 第一种,使用起来方便,但是有个坏处,如果你的文件是可编辑的文件(比如Excel wor ...
- 使用SNMP监控服务器运行情况
系统监测的基本概念及分类: a.系统监测的概述: 如何对现有IT架构的整体以及细节运行情况进行科学.系统和高效地监测是目前各企业运维和管理部门一项非常重要的工作内容.随着当前企业IT环境中服务器.应用 ...
- leetcode 215 第K个最大的元素
此问题可转化为Top K问题进行考虑,当用小顶堆选出K个最大值时,堆顶的元素即为第k大的元素 class Solution { public: int findKthLargest(vector< ...