【学术篇】bzoj2440 [中山市选2011]完全平方数
题目大意: 找到第k个无平方因子数.
看到数据范围很大, 我们要采用比\(O(n)\)还要小的做法.
考虑如果前\(x\)个数中有\(k-1\)个无平方因子数, 而前\(x+1\)个数中有\(k\)个无平方因子数, 那么\(x\)即为所求.
而由某种我不会的方式可以证明出答案是不会超过\(2n\)的, 所以我们可以二分答案.
问题就转化成了求前\(x\)个数中有多少个无平方因子数.
我们要求无平方因子数就要把所有的有平方因字数筛掉, 为了保证不重不漏, 我们考虑容斥.
我们枚举\(1\sim \sqrt n\)中的所有无平方因子数, 将其平方及其平方的倍数删掉.
这样的话有偶数个质因子的数就被多删了一遍, 我们再将他们加回来.
我们设容斥系数是\(k(i)\), 那么
\]
而根据上面的分析, 容斥系数\(k(i)\)满足:
0,\ 有平方因子\\
1,\ 无平方因子, \pi(i)是偶数\\
-1,\ 无平方因子, \pi(i)是奇数
\end{matrix}\right.
\]
非常巧合的是, 这个容斥系数跟\(\mu\)好像是一样的啊...
所以我们就可以得出
\]
这样预处理一波\(\mu\), 然后每次\(O(\sqrt n)\)统计答案即可.
时间复杂度\(O(T*log_2n*\sqrt n)\)
代码:
#include <cstdio>
const int N=45005;
int pr[N],mu[N],tot,n;
bool np[N];
void shai(){
mu[1]=np[1]=1;
for(int i=2,k;i<=45000;++i){
if(!np[i]) pr[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&(k=i*pr[j])<=45000;++j){
np[k]=1;
if(i%pr[j]==0){mu[k]=0; break;}
mu[k]=-mu[i];
}
}
}
inline bool check(int x,int s=0){
for(int i=1;i*i<=x;++i)
s+=x/(i*i)*mu[i];
return s>=n;
}
int main(){ shai();
int T; scanf("%d",&T);
while(T--){
scanf("%d",&n);
int l=1,r=n<<1;
while(l<r){
int mid=(1LL*l+r)>>1;
if(check(mid)) r=mid;
else l=mid+1;
}
printf("%d\n",r);
}
}
这个题并和莫比乌斯反演没什么关系, 算是莫比乌斯函数的一个小应用吧...
【学术篇】bzoj2440 [中山市选2011]完全平方数的更多相关文章
- BZOJ2440: [中山市选2011]完全平方数(莫比乌斯+容斥原理)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4920 Solved: 2389[Submit][Sta ...
- BZOJ2440 中山市选2011完全平方数(容斥原理+莫比乌斯函数)
如果能够知道不大于n的合法数有多少个,显然就可以二分答案了. 考虑怎么求这个.容易想到容斥,即枚举完全平方数.我们知道莫比乌斯函数就是此种容斥系数.筛出来就可以了. 注意二分时会爆int. #incl ...
- BZOJ2440 [中山市选2011]完全平方数
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...
- 2019.02.09 bzoj2440: [中山市选2011]完全平方数(二分答案+容斥原理)
传送门 题意简述:qqq次询问(q≤500)(q\le500)(q≤500),每次问第kkk个不被除111以外的完全平方数整除的数是多少(k≤1e9)(k\le1e9)(k≤1e9). 思路:考虑二分 ...
- BZOJ2440:[中山市选2011]完全平方数(莫比乌斯函数)
Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而这丝毫不影响他对其他数的热爱. 这天是 ...
- 题解【bzoj2440 [中山市选2011]完全平方数】
Description 求第 \(k\) 个不含平方因子的正整数.多组询问.\(k \leq 10^9, T \leq 50\) Solution 网上的题解几乎都是容斥,这里给一个简单的也挺快的做法 ...
- bzoj2440 [中山市选2011]完全平方数——莫比乌斯+容斥
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2440 莫比乌斯...被难倒... 看TJ:http://hzwer.com/4827.htm ...
- BZOJ2440: [中山市选2011]完全平方数 容斥原理_莫比乌斯函数
emmm....... 数学题都不友好QAQ...... Code: #include <cstdio> #include <algorithm> #include <c ...
- BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3028 Solved: 1460[Submit][Sta ...
随机推荐
- Centos抓包方法
1. 安装tcpdump工具 rpm -ql tcpdump #查看tcpdump是否安装 本机是安装的,yum安装: yum install tcpdump 2. tcpdump抓包 根据协议和端 ...
- UEditor可以如何直接复制word的图文内容到编辑器中
如何做到 ueditor批量上传word图片? 1.前端引用代码 <!DOCTYPEhtmlPUBLIC"-//W3C//DTD XHTML 1.0 Transitional//EN& ...
- (转)pd.read_csv之OSError: Initializing from file failed的解决方案
转:https://blog.csdn.net/funnyPython/article/details/78532102 rides = pd.read_csv(data_path)1 # OSErr ...
- PHP csv导出数据 (二)
全部导出和时间导出 html代码,全程并不需要引用什么插件 <include file="public@header"/> <link href="__ ...
- leetcode 238. 除自身以外数组的乘积 (python)
给定长度为 n 的整数数组 nums,其中 n > 1,返回输出数组 output ,其中 output[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积. 示例: 输入: [1 ...
- 测开之路六十五:UI测试平台之js
//添加网址的函数,生成一个输入网址的标签,并且把标签append到id为cases下function browser() { var html = '\ <div class="ro ...
- 关于Vue+iview的前端简单的导入数据(excel)
前一段时间项目经历了纯前端处理导入excel文件并处理等问题,数据量大的时候时间上长的一比,三千条数据需要三四秒甚至更长,不管产品咋想的,具体做法为: 首先下载一个这玩意: 进行简单封装一下: < ...
- 《STL源码剖析》——第四章、序列容器
1.容器的概观与分类 所谓序列式容器,其中的元素都可序(ordered)[比如可以使用sort进行排序],但未必有序(sorted).C++语言本身提供了一个序列式容器array,STL另外再提供v ...
- oracle函数与存储方法
oracle中的函数, 可以理解为java中的方法 有参数, 或者没有参数 通过return返回一个值 oracle存储过程跟函数唯一的区别, 存储过程不能通过return返回一个值 参数的类型, i ...
- python支持的进程与线程
一.multiprocessing模块介绍 python中的多线程无法利用CPU资源,在python中大部分情况使用多进程.python中提供了非常好的多进程包multiprocessing. mul ...