-题目の传送门-

题目大意: 找到第k个无平方因子数.

看到数据范围很大, 我们要采用比\(O(n)\)还要小的做法.

考虑如果前\(x\)个数中有\(k-1\)个无平方因子数, 而前\(x+1\)个数中有\(k\)个无平方因子数, 那么\(x\)即为所求.

而由某种我不会的方式可以证明出答案是不会超过\(2n\)的, 所以我们可以二分答案.

问题就转化成了求前\(x\)个数中有多少个无平方因子数.

我们要求无平方因子数就要把所有的有平方因字数筛掉, 为了保证不重不漏, 我们考虑容斥.

我们枚举\(1\sim \sqrt n\)中的所有无平方因子数, 将其平方及其平方的倍数删掉.

这样的话有偶数个质因子的数就被多删了一遍, 我们再将他们加回来.

我们设容斥系数是\(k(i)\), 那么

\[ans=\sum_{i=1}^{\left \lfloor \sqrt n \right \rfloor}k(i){\left \lfloor \frac n{i^2} \right \rfloor}
\]

而根据上面的分析, 容斥系数\(k(i)\)满足:

\[k(i)=\left\{\begin{matrix}
0,\ 有平方因子\\
1,\ 无平方因子, \pi(i)是偶数\\
-1,\ 无平方因子, \pi(i)是奇数
\end{matrix}\right.
\]

非常巧合的是, 这个容斥系数跟\(\mu\)好像是一样的啊...

所以我们就可以得出

\[ans=\sum_{i=1}^{\left \lfloor \sqrt n \right \rfloor}\mu(i){\left \lfloor \frac n{i^2} \right \rfloor}
\]

这样预处理一波\(\mu\), 然后每次\(O(\sqrt n)\)统计答案即可.

时间复杂度\(O(T*log_2n*\sqrt n)\)

代码:

#include <cstdio>
const int N=45005;
int pr[N],mu[N],tot,n;
bool np[N];
void shai(){
mu[1]=np[1]=1;
for(int i=2,k;i<=45000;++i){
if(!np[i]) pr[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&(k=i*pr[j])<=45000;++j){
np[k]=1;
if(i%pr[j]==0){mu[k]=0; break;}
mu[k]=-mu[i];
}
}
}
inline bool check(int x,int s=0){
for(int i=1;i*i<=x;++i)
s+=x/(i*i)*mu[i];
return s>=n;
}
int main(){ shai();
int T; scanf("%d",&T);
while(T--){
scanf("%d",&n);
int l=1,r=n<<1;
while(l<r){
int mid=(1LL*l+r)>>1;
if(check(mid)) r=mid;
else l=mid+1;
}
printf("%d\n",r);
}
}

这个题并和莫比乌斯反演没什么关系, 算是莫比乌斯函数的一个小应用吧...

【学术篇】bzoj2440 [中山市选2011]完全平方数的更多相关文章

  1. BZOJ2440: [中山市选2011]完全平方数(莫比乌斯+容斥原理)

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 4920  Solved: 2389[Submit][Sta ...

  2. BZOJ2440 中山市选2011完全平方数(容斥原理+莫比乌斯函数)

    如果能够知道不大于n的合法数有多少个,显然就可以二分答案了. 考虑怎么求这个.容易想到容斥,即枚举完全平方数.我们知道莫比乌斯函数就是此种容斥系数.筛出来就可以了. 注意二分时会爆int. #incl ...

  3. BZOJ2440 [中山市选2011]完全平方数

    本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...

  4. 2019.02.09 bzoj2440: [中山市选2011]完全平方数(二分答案+容斥原理)

    传送门 题意简述:qqq次询问(q≤500)(q\le500)(q≤500),每次问第kkk个不被除111以外的完全平方数整除的数是多少(k≤1e9)(k\le1e9)(k≤1e9). 思路:考虑二分 ...

  5. BZOJ2440:[中山市选2011]完全平方数(莫比乌斯函数)

    Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而这丝毫不影响他对其他数的热爱. 这天是 ...

  6. 题解【bzoj2440 [中山市选2011]完全平方数】

    Description 求第 \(k\) 个不含平方因子的正整数.多组询问.\(k \leq 10^9, T \leq 50\) Solution 网上的题解几乎都是容斥,这里给一个简单的也挺快的做法 ...

  7. bzoj2440 [中山市选2011]完全平方数——莫比乌斯+容斥

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2440 莫比乌斯...被难倒... 看TJ:http://hzwer.com/4827.htm ...

  8. BZOJ2440: [中山市选2011]完全平方数 容斥原理_莫比乌斯函数

    emmm....... 数学题都不友好QAQ...... Code: #include <cstdio> #include <algorithm> #include <c ...

  9. BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 3028  Solved: 1460[Submit][Sta ...

随机推荐

  1. Task8.循环和递归神经网络

    RNN提出的背景: RNN通过每层之间节点的连接结构来记忆之前的信息,并利用这些信息来影响后面节点的输出.RNN可充分挖掘序列数据中的时序信息以及语义信息,这种在处理时序数据时比全连接神经网络和CNN ...

  2. eclipse 报错:One or more constraints have not been satisfied.

    接受 我有同样的问题.在我的maven项目中添加速度依赖关系后,我在标记选项卡中得到相同的错误.然后我注意到maven项目创建的web.xml文件具有servlet2.3模式.当我将其更改为servl ...

  3. Cocoapods组件化之搭建组件化项目框架

    一,概述 随着公司业务需求的不断迭代发展,工程的代码量和业务逻辑也越来越多,原始的开发模式和架构已经无法满足我们的业务发展速度了,这时我们就需要将原始项目进行一次重构大手术了.这时我们应该很清晰这次手 ...

  4. Flutter中的浮动按钮 FloatingActionButton

    FloatingActionButton 简称 FAB ,可以实现浮动按钮,也可以实现类似闲鱼 app 的底部凸起导航 . 常用属性 FloatingActionButton的常用属性,同flutte ...

  5. JS判断数组是否为空

    var arr = []; if(arr == false){ console.log("arr is empty!"); }else{ console.log("arr ...

  6. 牛客 Rabbit的数列 (线段树维护值为x的个数+区间覆盖)

    https://ac.nowcoder.com/acm/contest/907/C 链接:https://ac.nowcoder.com/acm/contest/907/C来源:牛客网 题目描述 Ra ...

  7. 洛谷P1288 取数游戏II(博弈)

    洛谷P1288 取数游戏II 先手必胜的条件需要满足如下中至少 \(1\) 条: 从初始位置向左走到第一个 \(0\) 的位置,经过边的数目为偶数(包含 \(0\) 这条边). 从初始位置向右走到第一 ...

  8. 125、TensorFlow计算图的执行

    # TensorFlow使用tf.Session类来表示客户端程序之间的链接 # 虽然一个在其他语言中相似的接口也是可以使用的,列如C++ runtime # 一个tf.Session对象提供了访问本 ...

  9. Js定义一个表单并提交

    Js定义一个表单 var form = $("<form>"); //定义一个form表单 form.attr('style', 'display:none'); // ...

  10. Sabotage 【UVA - 10480】【最大流割边】

    题目链接 很容易会想到是最大流建边,但是同样的这里有坑点,就是有的人去输出边的时候,去把残余网络的流为0的边给输出了,其实不然,我们应当输出的是那些最后跑到深度为0的不能再走下去的点,只要把他们割了, ...