【学术篇】bzoj2440 [中山市选2011]完全平方数
题目大意: 找到第k个无平方因子数.
看到数据范围很大, 我们要采用比\(O(n)\)还要小的做法.
考虑如果前\(x\)个数中有\(k-1\)个无平方因子数, 而前\(x+1\)个数中有\(k\)个无平方因子数, 那么\(x\)即为所求.
而由某种我不会的方式可以证明出答案是不会超过\(2n\)的, 所以我们可以二分答案.
问题就转化成了求前\(x\)个数中有多少个无平方因子数.
我们要求无平方因子数就要把所有的有平方因字数筛掉, 为了保证不重不漏, 我们考虑容斥.
我们枚举\(1\sim \sqrt n\)中的所有无平方因子数, 将其平方及其平方的倍数删掉.
这样的话有偶数个质因子的数就被多删了一遍, 我们再将他们加回来.
我们设容斥系数是\(k(i)\), 那么
\]
而根据上面的分析, 容斥系数\(k(i)\)满足:
0,\ 有平方因子\\
1,\ 无平方因子, \pi(i)是偶数\\
-1,\ 无平方因子, \pi(i)是奇数
\end{matrix}\right.
\]
非常巧合的是, 这个容斥系数跟\(\mu\)好像是一样的啊...
所以我们就可以得出
\]
这样预处理一波\(\mu\), 然后每次\(O(\sqrt n)\)统计答案即可.
时间复杂度\(O(T*log_2n*\sqrt n)\)
代码:
#include <cstdio>
const int N=45005;
int pr[N],mu[N],tot,n;
bool np[N];
void shai(){
mu[1]=np[1]=1;
for(int i=2,k;i<=45000;++i){
if(!np[i]) pr[++tot]=i,mu[i]=-1;
for(int j=1;j<=tot&&(k=i*pr[j])<=45000;++j){
np[k]=1;
if(i%pr[j]==0){mu[k]=0; break;}
mu[k]=-mu[i];
}
}
}
inline bool check(int x,int s=0){
for(int i=1;i*i<=x;++i)
s+=x/(i*i)*mu[i];
return s>=n;
}
int main(){ shai();
int T; scanf("%d",&T);
while(T--){
scanf("%d",&n);
int l=1,r=n<<1;
while(l<r){
int mid=(1LL*l+r)>>1;
if(check(mid)) r=mid;
else l=mid+1;
}
printf("%d\n",r);
}
}
这个题并和莫比乌斯反演没什么关系, 算是莫比乌斯函数的一个小应用吧...
【学术篇】bzoj2440 [中山市选2011]完全平方数的更多相关文章
- BZOJ2440: [中山市选2011]完全平方数(莫比乌斯+容斥原理)
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 4920 Solved: 2389[Submit][Sta ...
- BZOJ2440 中山市选2011完全平方数(容斥原理+莫比乌斯函数)
如果能够知道不大于n的合法数有多少个,显然就可以二分答案了. 考虑怎么求这个.容易想到容斥,即枚举完全平方数.我们知道莫比乌斯函数就是此种容斥系数.筛出来就可以了. 注意二分时会爆int. #incl ...
- BZOJ2440 [中山市选2011]完全平方数
本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作. 本文作者:ljh2000作者博客:http://www.cnblogs.com/ljh2000-jump/转 ...
- 2019.02.09 bzoj2440: [中山市选2011]完全平方数(二分答案+容斥原理)
传送门 题意简述:qqq次询问(q≤500)(q\le500)(q≤500),每次问第kkk个不被除111以外的完全平方数整除的数是多少(k≤1e9)(k\le1e9)(k≤1e9). 思路:考虑二分 ...
- BZOJ2440:[中山市选2011]完全平方数(莫比乌斯函数)
Description 小 X 自幼就很喜欢数.但奇怪的是,他十分讨厌完全平方数.他觉得这些数看起来很令人难受.由此,他也讨厌所有是完全平方数的正整数倍的数.然而这丝毫不影响他对其他数的热爱. 这天是 ...
- 题解【bzoj2440 [中山市选2011]完全平方数】
Description 求第 \(k\) 个不含平方因子的正整数.多组询问.\(k \leq 10^9, T \leq 50\) Solution 网上的题解几乎都是容斥,这里给一个简单的也挺快的做法 ...
- bzoj2440 [中山市选2011]完全平方数——莫比乌斯+容斥
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=2440 莫比乌斯...被难倒... 看TJ:http://hzwer.com/4827.htm ...
- BZOJ2440: [中山市选2011]完全平方数 容斥原理_莫比乌斯函数
emmm....... 数学题都不友好QAQ...... Code: #include <cstdio> #include <algorithm> #include <c ...
- BZOJ 2440: [中山市选2011]完全平方数 [容斥原理 莫比乌斯函数]
2440: [中山市选2011]完全平方数 Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 3028 Solved: 1460[Submit][Sta ...
随机推荐
- NODE升级到V12.X.X
Node.js 是一个基于Chrome JavaScript运行时的平台,可轻松构建快速,可扩展的网络应用程序.最新版本 node.js yum存储库 由其官方网站维护.使用本教程添加yum存储库,并 ...
- Test 6.29 T2 染色
问题描述 于是 CJK 轻轻松松就切了第一题."好,那么来看看第二题吧." JesseLiu 大手一挥,CJK 眼前立刻出现了一棵有 n 个节点的树."现在,你将要为这颗 ...
- OC中保存自定义类型对象的持久化方法
OC中如果要将自定义类型的对象保存到文件中,必须进行以下三个条件: 想要把存放自定义类型的数组进行 持久化(就是将内存中的临时数据以文件<数据库等>的形式写到磁盘上)必须满足: 1. 自定 ...
- linux运维、架构之路-Nginx服务
一.Nginx服务 1.介绍 Nginx软件常见的使用方式或架构为:LNMP(linux nginx mysql php),Nginx三大主要功能,web网站服务,反向代理负载均衡(n ...
- ResultSet用法集锦 (转)
转:http://soft-development.iteye.com/blog/1420323 结果集(ResultSet)是数据中查询结果返回的一种对象,可以说结果集是一个存储查询结果的对象,但是 ...
- python使用中遇到的一些问题
一./usr/bin/ld:cannot find -lxxx错误 例如出现了问题: /usr/bin/ld:cannot find -lssl 其中xxx表示函式库文件名称,如上面的libssl.s ...
- php-mbstring php7.0-zip
sudo apt install php-mbstring sudo apt install zip unzip php7.0-zip
- python如何判断1个列表中所有的数据都是相等的?
方法一: 元素两两比较,如果有数据不同,则r的值变为false #!/usr/bin/python a=[22,22,22,22] b = len(a) r=True for i in range(b ...
- spring cloud网关gateway
spring gateway使用基于netty异步io,第二代网关:zuul 1使用servlet 3,第一代网关,每个请求一个线程,同步Servlet,多线程阻塞模型.而spring貌似不想在支持z ...
- rpm --qf 命令
1. 环境准备: sudo apt-get install rpm (Ubuntu系统) wget ftp://rpmfind.net/linux/fedora-secondary/developme ...