分析

显然可以转化为阶梯nim。

于是问题转化为了对于所有\(i \in [0,n-m]\),求长度为\(\lfloor\frac{m+1}{2}\rfloor\),和为\(i\),异或和非\(0\)的非负整数序列的个数。

直接DP看似不太可行,然而UOJ群的dalao们告诉博主可以按位DP。

令\(f[i][j][0/1]\)表示考虑了后\(i\)位,当前的和为\(j\),后\(i\)位的异或和是否为\(0\)的方案数,转移时枚举当前位有多少个\(1\),类似数位DP那样就好。

最后用隔板法统计答案即可。

记搜的话直接记搜可能过不去,加些剪枝就好了。

代码

#include <bits/stdc++.h>

#define rin(i,a,b) for(int i=(a);i<=(b);++i)
#define irin(i,a,b) for(int i=(a);i>=(b);--i)
#define trav(i,a) for(int i=head[a];i;i=e[i].nxt)
#define Size(a) (int)a.size()
#define pb push_back
#define mkpr std::make_pair
#define fi first
#define se second
#define lowbit(a) ((a)&(-(a)))
typedef long long LL; using std::cerr;
using std::endl; inline int read(){
int x=0,f=1;char ch=getchar();
while(!isdigit(ch)){if(ch=='-')f=-1;ch=getchar();}
while(isdigit(ch)){x=x*10+ch-'0';ch=getchar();}
return x*f;
} const int MOD=1e9+9;
const int MAXN=150005; int n,m,cnt;
int fac[MAXN+50],invf[MAXN+50];
int f[20][MAXN][2]; inline int qpow(int x,int y){
int ret=1,tt=x%MOD;
while(y){
if(y&1)ret=1ll*ret*tt%MOD;
tt=1ll*tt*tt%MOD;
y>>=1;
}
return ret;
} inline int binom(int n,int m){
if(n<0||m<0||n<m)return 0;
return 1ll*fac[n]*invf[n-m]%MOD*invf[m]%MOD;
} int dfs(int pos,int sum,int have1){
if(sum&((1<<pos)-1))return 0;
if(pos>17){
if(sum==0&&have1)return 1;
else return 0;
}
if(f[pos][sum][have1]!=-1)return f[pos][sum][have1];
int ret=0;
rin(i,0,cnt){
if((1ll<<pos)*i>sum)break;
ret=(ret+1ll*dfs(pos+1,sum-(1ll<<pos)*i,have1|(i&1))*binom(cnt,i))%MOD;
}
return f[pos][sum][have1]=ret;
} void init(){
fac[0]=1;
rin(i,1,n+m)fac[i]=1ll*fac[i-1]*i%MOD;
invf[n+m]=qpow(fac[n+m],MOD-2);
irin(i,n+m-1,0)invf[i]=1ll*invf[i+1]*(i+1)%MOD;
} int main(){
memset(f,-1,sizeof f);
n=read(),m=read();init();
cnt=(m+1)/2;
int ans=0,box=(m&1)==0?cnt+1:cnt;
rin(i,0,n-m){
int rem=n-m-i;
ans=(ans+1ll*dfs(0,i,0)*binom(rem+box-1,box-1))%MOD;
}
printf("%d\n",ans);
return 0;
}

[VIJOS2055][SDOI2019]移动金币:DP+组合数学的更多相关文章

  1. CF_229E_Gift_概率DP+组合数学

    CF_229E_Gift_概率DP+组合数学 题目描述: 很久很久以前,一位老人和他的妻子住在蔚蓝的海边.有一天,这位老人前去捕鱼,他捉到了一条活着的金鱼.鱼说:“噢,老渔人!我祈求你放我回到海里,这 ...

  2. [多校联考2019(Round 5 T3)]青青草原的表彰大会(dp+组合数学)

    [多校联考2019(Round 5)]青青草原的表彰大会(dp+组合数学) 题面 青青草原上有n 只羊,他们聚集在包包大人的家里,举办一年一度的表彰大会,在这次的表彰大会中,包包大人让羊们按自己的贡献 ...

  3. [Codeforces722E] Research Rover (dp+组合数学)

    [Codeforces722E] Research Rover (dp+组合数学) 题面 给出一个N*M的方格阵,从(1,1)出发,到(N,M)结束,从(x,y)只能走到(x+1,y)或(x,y+1) ...

  4. # [SDOI2019]移动金币 阶梯博弈 dp

    [SDOI移动金币 链接 vijos 思路 阶梯博弈,dp统计. 参见wxyww 代码 #include <bits/stdc++.h> using namespace std; cons ...

  5. [SDOI2019]移动金币(博弈论+阶梯Nim+按位DP)

    首先可以把问题转化一下:m堆石子,一共石子数不超过(n-m)颗,每次可以将一堆中一些石子推向前一堆,无法操作则失败,问有多少种方法使得先手必胜? 然后这个显然是个阶梯Nim,然后有这样的结论:奇数层异 ...

  6. P5363-[SDOI2019]移动金币【阶梯博弈,dp,组合数学】

    正题 题目链接:https://www.luogu.com.cn/problem/P5363 题目大意 \(1\times n\)的网格上有\(m\)个硬币,两个人轮流向前移动一个硬币但是不能超过前一 ...

  7. CCF 201312-4 有趣的数 (数位DP, 状压DP, 组合数学+暴力枚举, 推公式, 矩阵快速幂)

    问题描述 我们把一个数称为有趣的,当且仅当: 1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次. 2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前. 3. 最高 ...

  8. CF_402F dp+组合数学

    题目链接:http://codeforces.com/problemset/problem/403/D /**算法分析: 这道题综合的考察了dp背包思想和组合数学 */ #include<bit ...

  9. 【BZOJ 3294】 3294: [Cqoi2011]放棋子 (DP+组合数学+容斥原理)

    3294: [Cqoi2011]放棋子 Description Input 输入第一行为两个整数n, m, c,即行数.列数和棋子的颜色数.第二行包含c个正整数,即每个颜色的棋子数.所有颜色的棋子总数 ...

随机推荐

  1. ASP.NET Core中使用EasyCaching作为缓存抽象层

    ⒈是什么? 和CacheManager差不多,两者的定位和功能都差不多. EasyCaching主要提供了下面的几个功能 统一的抽象缓存接口 多种常用的缓存Provider(InMemory,Redi ...

  2. Luogu P4436 [HNOI/AHOI2018]游戏

    题目 我们要求出\(l_i,r_i\)表示\(i\)最远能够到达的最左边和最右边的格子. 首先有一个比较简单的暴力,就是每次我们选择一个格子,然后从当前格子开始往左右暴力扩展,找到能够到达的最远的格子 ...

  3. 外贸开发,用java调用速卖通api第一步,token的获取。

     第一步 定义速卖通api的常量  public String client_id;  public String client_key;  public String site;   第二步 获取登 ...

  4. RSA 加密长度计算公式

    The length of data that can be encrypted using RSA is determined primarily by the size of the key yo ...

  5. react 兼容 ie11

    npm install core-js -D 在入口文件第一行引入import ‘core-js’ 在package.json做如下修改 加上ie 11

  6. 安装Mybatis插件

    http://blog.csdn.net/nextyu/article/details/69225004

  7. git ignore 如何忽略已经提交的文件修改

    git ignore git ignore的作用很简单,本地仓库忽略一些文件的修改. ignore的规格可以按文件匹配,按后缀匹配或者按文件夹匹配. 如果在项目开发过程中,需要忽略某一个文件已经提交的 ...

  8. oracle重置dba用户密码

    1.进入sqlplus里面: [oracle@master ~]$ sqlplus / as sysdba SQL*Plus: Release 12.1.0.2.0 Production on Tue ...

  9. poj 2081 Recaman's Sequence (dp)

    Recaman's Sequence Time Limit: 3000MS   Memory Limit: 60000K Total Submissions: 22566   Accepted: 96 ...

  10. RaspberryPi交叉编译环境配置-Ubuntu & wiringPi & Qt

    1.配置RaspberryPi交叉编译环境: 在开发RaspberryPi Zero的过程中,由于Zero板卡的CPU的处理性能比较弱,因此其编译的性能比较弱,需要将代码在PC电脑上交叉编译完成之后再 ...