链接:

https://www.acwing.com/problem/content/93/

题意:

给定一张 n 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径。 Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次。

思路:

用二进制枚举哪些点被经过了.同时枚举经过的点j,再枚举经过点j之前的点k.

得到Dp[i][j] = min(Dp[i][j], Dp[lasti][k]+Len[k][j]).其中i对应经过点j时的压缩值,lasti为经过点j上一时刻的压缩值.

代码:

#include <bits/stdc++.h>
using namespace std; int F[1<<20][30];
int Map[30][30];
int n; int main()
{
scanf("%d", &n);
for (int i = 0;i < n;i++)
{
for (int j = 0;j < n;j++)
scanf("%d", &Map[i][j]);
}
memset(F, 0x3f3f, sizeof(F));
F[1][0] = 0;
for (int i = 1;i < (1<<n);i++)
{
for (int j = 0;j < n;j++)
{
if ((i >> j) & 1)
{
for (int k = 0;k < n;k++)
{
if ((i ^ (1<<j)) >> k & 1)
F[i][j] = min(F[i][j], F[i^(1<<j)][k]+Map[k][j]);
}
}
}
}
printf("%d\n", F[(1<<n)-1][n-1]); return 0;
}

Acwing-91-最短Hamilton路径(状压DP)的更多相关文章

  1. 完全图的最短Hamilton路径——状压dp

    题意:给出一张含有n(n<20)个点的完全图,求从0号节点到第n-1号节点的最短Hamilton路径.Hamilton路径是指不重不漏地经过每一个点的路径. 算法进阶上的一道状压例题,复杂度为O ...

  2. 最短Hamilton路径-状压dp解法

    最短Hamilton路径 时间限制: 2 Sec  内存限制: 128 MB 题目描述 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamil ...

  3. AcWing 91. 最短Hamilton路径

    今天第一次在\(AcWing\)这个网站上做题,来发一下此网站的第一篇题解 传送门 思路 直接枚举的话时间复杂度为\(O(n*n!)\) 复杂度显然爆炸,所以我们用二进制枚举,这样就可以把复杂度降到\ ...

  4. 『最短Hamilton路径 状态压缩DP』

    状压DP入门 最短Hamilton路径 Description 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Hamil ...

  5. 状压dp 持续更新

    前置知识点:二进制状态压缩,动态规划. 1. AcWing 91 最短Hamilton路径 (https://www.acwing.com/problem/content/93/) 给定一张 n 个点 ...

  6. CH0103最短Hamilton路径 & poj2288 Islands and Brigdes【状压DP】

    虐狗宝典学习笔记: 取出整数\(n\)在二进制表示下的第\(k\)位                                                    \((n >> ...

  7. 最短Hamilton路径(状压dp)

    最短Hamilton路径实际上就是状压dp,而且这是一道作为一个初学状压dp的我应该必做的题目 题目描述 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 ...

  8. AcWing 最短Hamilton距离 (状压DP)

    题目描述 给定一张 n 个点的带权无向图,点从 0∼n−1 标号,求起点 0 到终点 n−1 的最短 Hamilton 路径. Hamilton 路径的定义是从 0 到 n−1 不重不漏地经过每个点恰 ...

  9. 最短Hamilton路径【状压DP】

    给定一张 nn 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次. 输入 ...

随机推荐

  1. python高级篇

    1.切片功能:类似于java中的split方法.对list或者triple中几个值进行取出的过程. L = ['a','b','c','d']   L[0:3] = ['a','b','c']   # ...

  2. OpenStack组件——RabbitMQ消息队列

    1.MQ 全称为 Message Queue, 消息队列( MQ ) 是一种应用程序对应用程序的通信方法.应用程序通过读写出入队列的消息(针对应用程序的数据)来通信,而无需专用连接来链接它们. 消息传 ...

  3. virtualenv以及virtualenvwrapper的安装和使用

    Virtualenv 安装 安装前最好保证pip为最新版本: python -m pip install -U pippip install virtualenv 创建新的环境 virtualenv ...

  4. 【Linux-驱动】printk的打印级别

    级别: 日志级别用宏表示,日志级别宏展开为一个字符串,在编译是由预处理器将它和消息本文拼接成一个字符串,因此printk函数中日志级别宏和格式字符串间不能有逗号.printk的日志级别定义在 /inc ...

  5. JCC指令

    0.JMP1.JE, JZ 结果为零则跳转(相等时跳转) ZF=12.JNE, JNZ 结果不为零则跳转(不相等时跳转) ZF=03.JS   结果为负则跳转   SF=14.JNS   结果为非负则 ...

  6. python 求从1加到100的和,join的用法

    li=[] def func3(x): li.append(str(x)) if x==1: return 1 return x+func3(x-1) # print(func3(100)) re=f ...

  7. Go语言流程控制(六)

    go语言的流程控制主要有if , for和switch. if else(分支结构) go语言的if判断: func main() { score:=65 if score>=90{ fmt.P ...

  8. Ubuntu分区挂载

    创建主分区: 25G    主分区    空间起始位置    Ext4日志文件系统    / (ps:安装主要放这了,原因不明) 创建swap分区: 8192MB    逻辑分区        空间起 ...

  9. jQuery操作选中select下拉框的值

    js和jQuery联合操作dom真的很好用,如果不是专业前端人员的话,我觉得吧前端语言只要熟练掌握js和jQuery就可以了. 获取select下拉框的几种情况如下: 1.获取第一个option的值 ...

  10. 11 Mysql之配置双主热备+keeepalived.md

    准备 1. 双主 master1 192.168.199.49 master2 192.168.199.50 VIP 192.168.199.52 //虚拟IP 2.环境 master:nginx + ...