题目链接:

传送门

题目分析:

线段树妙题,感觉思路奇奇怪怪的,虽然对我来说不是“线段树菜题”(\(ldx\)神仙\(blog\)原话)\(QAQ\)

考虑怎么样维护可合并的信息解决这道题

首先有一个很明显的贪心,一张卡片正反面肯定是能小就小,不带修的话直接就过了

带修的话怎么处理呢,考虑在线段树上维护一个\(sum[0/1]\),表示这个节点\(l\)位置上卡片选正/反面的时候\(r\)位置上卡片的最小取值,不合法赋\(INF\)

重点在\(pushup\)里面,每次\(pushup\)的时候把左子区间维护的两个\(sum\)分别和右子区间左端点的两个值比较一下看合不合法,不合法赋\(INF\)(感觉说的不是很清楚,自己脑补一下\(or\)看代码可能会好懂一点

每次交换可以看做单点修改

代码:

#include<bits/stdc++.h>
#define N (300000 + 10)
using namespace std;
inline int read() {
int cnt = 0, f = 1; char c = getchar();
while (!isdigit(c)) {if (c == '-') f = -f; c = getchar();}
while (isdigit(c)) {cnt = (cnt << 3) + (cnt << 1) + c - '0'; c = getchar();}
return cnt * f;
}
const int INF = 1000000000 + 7;
int n, m;
int x, y;
int a[N], b[N];
struct node {
int l, r, sum[2];
#define l(p) tree[p].l
#define r(p) tree[p].r
#define sum0(p) tree[p].sum[0]
#define sum1(p) tree[p].sum[1]
}tree[N << 2];
void pushup(int p) {
sum0(p) = sum1(p) = INF;
if (sum0(p << 1) <= a[l(p << 1 | 1)]) sum0(p) = sum0(p << 1 | 1);
if (sum0(p << 1) <= b[l(p << 1 | 1)]) sum0(p) = min(sum0(p), sum1(p << 1 | 1));
if (sum1(p << 1) <= a[l(p << 1 | 1)]) sum1(p) = sum0(p << 1 | 1);
if (sum1(p << 1) <= b[l(p << 1 | 1)]) sum1(p) = min(sum1(p), sum1(p << 1 | 1));
}
void build(int p, int l, int r) {
l(p) = l, r(p) = r;
if (l == r) {sum0(p) = a[l], sum1(p) = b[l]; return;}
int mid = (l + r) >> 1;
build (p << 1, l, mid);
build (p << 1 | 1, mid + 1, r);
pushup(p);
}
void modify(int p, int x, int u, int v) {
if (u > v) swap(u, v);
if (l(p) == r(p)) {sum0(p) = a[l(p)] = u, sum1(p) = b[l(p)] = v; return;}
int mid = (l(p) + r(p)) >> 1;
if (x <= mid) modify(p << 1, x, u, v);
else modify(p << 1 | 1, x, u, v);
pushup(p);
}
int cura, curb;
int main() {
n = read();
for (register int i = 1; i <= n; i++) {
a[i] = read(), b[i] = read();
if (a[i] > b[i]) swap(a[i], b[i]);
}
build(1, 1, n);
m = read();
for (register int i = 1; i <= m; i++) {
x = read(), y = read();
cura = a[x], curb = b[x];
modify(1, x, a[y], b[y]), modify(1, y, cura, curb);
if (sum0(1) == INF && sum1(1) == INF) printf("NIE\n");
else printf("TAK\n");
}
return 0;
}

[POI2014]KAR-Cards的更多相关文章

  1. [POI2014]Cards

    题目大意: 有$n(n\le2\times10^5)$张卡片排成一排,每张卡片正反面有两个数$a_i$和$b_i$.$m(m\le10^6)$次操作,每次交换第$c_i$和第$d_i$张卡片,问若可以 ...

  2. BZOJ 1004 【HNOI2008】 Cards

    题目链接:Cards 听说这道题是染色问题的入门题,于是就去学了一下\(Bunside\)引理和\(P\acute{o}lya\)定理(其实还是没有懂),回来写这道题. 由于题目中保证"任意 ...

  3. Codeforces Round #384 (Div. 2) 734E Vladik and cards

    E. Vladik and cards time limit per test 2 seconds memory limit per test 256 megabytes input standard ...

  4. BZOJ 3524: [Poi2014]Couriers [主席树]

    3524: [Poi2014]Couriers Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 1892  Solved: 683[Submit][St ...

  5. bzoj 1004 Cards

    1004: [HNOI2008]Cards Description 小春现在很清闲,面对书桌上的N张牌,他决定给每张染色,目前小春只有3种颜色:红色,蓝色,绿色.他询问Sun有 多少种染色方案,Sun ...

  6. codeforces 744C Hongcow Buys a Deck of Cards

    C. Hongcow Buys a Deck of Cards time limit per test 2 seconds memory limit per test 256 megabytes in ...

  7. BZOJ 3524: [Poi2014]Couriers

    3524: [Poi2014]Couriers Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 1905  Solved: 691[Submit][St ...

  8. CF 204B Little Elephant and Cards

    题目链接: 传送门 Little Elephant and Cards time limit per test:2 second     memory limit per test:256 megab ...

  9. HDU 1535 Invitation Cards(最短路 spfa)

    题目链接: 传送门 Invitation Cards Time Limit: 5000MS     Memory Limit: 32768 K Description In the age of te ...

  10. Codeforces Round #227 (Div. 2) E. George and Cards set内二分+树状数组

    E. George and Cards   George is a cat, so he loves playing very much. Vitaly put n cards in a row in ...

随机推荐

  1. javascript和jQuery知识点总结

    attribute: $(”p”).addClass(css中定义的样式类型); 给某个元素添加样式 $(”img”).attr({src:”test.jpg”,alt:”test Image”}); ...

  2. HtmlCleanner结合xpath用法(转载)

    HtmlCleaner cleaner = new HtmlCleaner(); TagNode node = cleaner.clean(new URL("http://finance.s ...

  3. 【POJ】1502 MPI Maelstrom

    题目链接:http://poj.org/problem?id=1502 题意:一个处理器给n-1个处理器发送广播,问最短时间.广播时并发,也就是各个路径就大的一方.输入如果是x的话说明两个处理器不能相 ...

  4. capserjs-prototype(下)

    scrollTo() 具体样式: scrollTo(Number x, Number y) New in version 1.1-beta3. Scrolls current document to ...

  5. jdbc加载驱动方法

    1.Class.forName("com.mysql.jdbc.Driver"); 2. DriverManager.registerDriver(new com.mysql.jd ...

  6. Activiti学习笔记8 — UserTask私有任务的使用

    每一个UserTask都会在Execution表和Task表中各产生一条记录 一.创建流程引擎对象 /** * 1.创建流程引擎对象 */ private ProcessEngine processE ...

  7. Hadoop Pig组件

  8. 我也可以独立(引用JS外部文件)

    我也可以独立(引用JS外部文件) 通过前面知识学习,我们知道使用<script>标签在HTML文件中添加JavaScript代码,如图: JavaScript代码只能写在HTML文件中吗? ...

  9. django项目基础

    D:\>django-admin startproject GodWork1 D:\>cd GodWork1 D:\GodWork1>python manage.py startap ...

  10. 神经网络 (1)- Alexnet

    文章目录 模型结构 conv1层 conv2层 conv3层 conv4层 conv5层 FC6全链接图: fc7全连接层:和fc6类似. fc8链接层: 模型优化 选择ReLU作为激活函数 多GPU ...