DFT变换的性质

线性性质

\[
\begin{aligned}
y[n]&=ax[n]+bw[n]\xrightarrow{DFT}Y[k]=\sum_{n=0}^{N-1}(ax[n]+bw[n])W_N^{kn}\\
&=a\sum_{n=0}^{N-1}x[n]W_N^{kn}+b\sum_{n=0}^{N-1}w[n]W_N^{kn} \\
&=aX[k]+bW[k]
\end{aligned}
\]

时移性质

\[
\begin{aligned}
x[n-n_0]&\xrightarrow{DFT}\sum_{n=0}^{N-1}x[<n-n_0>_N]e^{-j\frac{2\pi k}{N}n} \\
&\xrightarrow{m=n-n_0}\sum_{m=-n_0}^{N-n_0-1}x[<m>_N]e^{-j\frac{2\pi k}{N}(m+n_0)} \\
&=W_{N}^{kn_0}\sum_{m=0}^{N-1}x[m]W_{N}^{km} \\
&=W_{N}^{kn_0}X[k]
\end{aligned}
\]

频移性质

\[
\begin{aligned}
W_N^{-k_0n}x[n]\xrightarrow{DFT}\sum_{n=0}^{N-1}x[n]W_N^{(k-k_0)n}=X[<k-k_0>_N]
\end{aligned}
\]

时域反转

\[
\begin{aligned}
x[<-n>_N]&\xrightarrow{DFT}\sum_{n=0}^{N-1}x[<-n>_N]W_{N}^{kn} \\
&\xrightarrow{m=-n}\sum_{m=-(N-1)}^{0}x[<m>_N]W_{N}^{-km} \\
&=\sum_{m=0}^{N-1}x[m]W_{N}^{-km} \\
&=X[<-k>_N]
\end{aligned}
\]

时域共轭

\[
\begin{aligned}
x^{*}[n]&\xrightarrow{DFT}\sum_{n=0}^{N-1}x^{*}[n]W_N^{kn} \\
&=(\sum_{n=0}^{N-1}x[n]W_N^{-kn})^{*} \\
&=X^{*}[<-k>_N]
\end{aligned}
\]

由上面两个可以推得
\[
\color{red}x^{*}[<-n>_N]\xrightarrow{DFT}X^{*}[k]
\]

对称性质

\[
x_{cs}[n]=\frac{1}{2}(x[n]+x^{*}[<-n>_N])\xrightarrow{DFT}\frac{1}{2}(X[k]+X^{*}[k])=X_{re}[k]
\]
\[
x_{ca}[n]=\frac{1}{2}(x[n]-x^{*}[<-n>_N])\xrightarrow{DFT}\frac{1}{2}(X[k]-X^{*}[k])=jX_{im}[k]
\]
\[
x_{re}[n]=\frac{1}{2}(x[n]+x^{*}[n])\xrightarrow{DFT}\frac{1}{2}(X[k]+X^{*}[<-k>_N])=X_{cs}[k]
\]
\[
jx_{im}[n]=\frac{1}{2}(x[n]-x^{*}[n])\xrightarrow{DFT}\frac{1}{2}(X[k]-X^{*}[<-k>_N])=X_{ca}[k]
\]

卷积性质

  假设\(x[n],w[n]\)都是长度为\(N\)的有限长序列,它们的DFT分别为\(X[k],W[k]\),假设它们的有值区间为\(0 \leq n \leq N-1​\),那么它们进行圆周卷积的DFT为:
\[
\begin{aligned}
x[n]\otimes w[n]&=\sum_{m=0}^{N-1}x[m]w[<n-m>_N] \\
&\xrightarrow{DFT}\sum_{n=0}^{N-1}\sum_{m=0}^{N-1}x[m]w[<n-m>_N]W_N^{kn} \\
&=\sum_{m=0}^{N-1}x[m]\sum_{n=0}^{N-1}\frac{1}{N}\sum_{r=0}^{N-1}W[r]W_N^{r(n-m)}W_N^{kn} \\
&=\sum_{m=0}^{N-1}x[m]\sum_{r=0}^{N-1}W[r]W_N^{km}(\frac{1}{N}\sum_{n=0}^{N-1}W_N^{k-r}) \\
&=\sum_{m=0}^{N-1}x[m]W_N^{km}W[k] \\
&=X[k]W[k]
\end{aligned}
\]

上式中用到了
\[
\frac{1}{N}\sum_{n=0}^{N-1}W_N^{k-r}=
\begin{cases}
1, k -r = lN , \, l=0,1,...\\
0, 其它
\end{cases}
\]

Parseval定理

\[
\begin{aligned}
\sum_{n=0}^{N-1}x[n]y^{*}[n]&=\sum_{n=0}^{N-1}x[n](\frac{1}{N}\sum_{k=0}^{N-1}Y[k]W_N^{-kn})^{*}\\
&=\frac{1}{N}\sum_{k=0}^{N-1}Y^{*}[k]\sum_{n=0}^{N-1}x[n]W_N^{kn}\\
&=\frac{1}{N}\sum_{k=0}^{N-1}X[k]Y^{*}[k]
\end{aligned}
\]

特别的,当\(x[n]=y[n]​\)时
\[
\sum_{n=0}^{N-1}\vert x[n]\vert^2=\frac{1}{N}\sum_{k=0}^{N-1}\vert X[k]\vert^2
\]

13 DFT变换的性质的更多相关文章

  1. 《图像处理实例》 之 目标旋转矫正(基于区域提取、DFT变换)

    目标:1.把矩形旋转正.          2.把文字旋转校正.                                                                     ...

  2. 08 DTFT变换的性质

    DTFT变换的性质 线性性质 设 \[ x[n]\xrightarrow{DTFT}X(e^{jw})\quad y[n]\xrightarrow{DTFT}Y(e^{jw})​ \] 则 \[ \ ...

  3. z变换的性质

    z变换的许多重要性质在数字信号处理中常常要用到. 序列 z变换 收敛域 1)x(n) X(z) Rx-< |z| <Rx+ 2)y(n) Y(z) Ry-< |z| <Ry+ ...

  4. 为什么要进行傅立叶变换?傅立叶变换究竟有何意义?如何用Matlab实现快速傅立叶变换

    写在最前面:本文是我阅读了多篇相关文章后对它们进行分析重组整合而得,绝大部分内容非我所原创.在此向多位原创作者致敬!!!一.傅立叶变换的由来关于傅立叶变换,无论是书本还是在网上可以很容易找到关于傅立叶 ...

  5. 【转】由DFT推导出DCT

    原文地址:http://blog.sina.com.cn/s/blog_626631420100xvxd.htm 已知离散傅里叶变换(DFT)为: 由于许多要处理的信号都是实信号,在使用DFT时由于傅 ...

  6. z 变换

    1. z 变换 单位脉冲响应为 \(h[n]\) 的离散时间线性时不变系统对复指数输入 \(z^n\) 的响应 \(y[n]\) 为 \[ \tag{1} y[n] = H(z) z^{n}\] 式中 ...

  7. 高速数论变换(NTT)

    今天的A题.裸的ntt,但我不会,于是白送了50分. 于是跑来学一下ntt. 题面非常easy.就懒得贴了,那不是我要说的重点. 重点是NTT,也称高速数论变换. 在非常多问题中,我们可能会遇到在模意 ...

  8. 【转】小解DCT与DFT

    这学期当本科生数字图像处理的助教老师,为使学生更好地理解DCF和DFT之间的关系给出三题,大家可以思考一下,看一下自己对这些最简单的变换是否真正理解. 1.求解序列f(n)=[2,3,3,4,4,3, ...

  9. 离散傅里叶变换(DFT)

    目录     一.研究的意义     二.DFT的定义    三.DFT与傅里叶变换和Z变换的关系     四.DFT的周期性     五.matlab实验       五.1 程序         ...

随机推荐

  1. AcWing 908. 最大不相交区间数量

    //1.将每个区间按右端点从小到大排序 //2.从前往后依次枚举每个区间,如果当前区间中已经包含点,就直接跳过,否则,选择当前区间的右端点 //选右端点的话,可以尽可能的包含在多个区间里 //那么选的 ...

  2. <meta charset="utf-8" name="viewport" content="width=device-width, initial-scale=1.0, minimum-scale=0.5, maximum-scale=2.0, user-scalable=yes"/>

    <meta charset="utf-8" name="viewport" content="width=device-width, initi ...

  3. How To Use These LED Garden Lights

    Are you considering the lighting options for the outdoor garden? Depending on how you use it, LED ga ...

  4. truffle编译合约常见问题及其在私链上的部署与交互

    一.初始化truffle项目 truffle init //初始化truffle项目文件夹 将写好的合约文件放到contract文件夹中 truffle  compile  //编译合约 (注意!! ...

  5. Ugly Number Gym - 101875B (最小表示法)

    题意:给你一串长度为n的数,这个数可以将后面的数挪到前面来,如果没有小于最开始的那个数的话就输出YES,否则输出NO 题解:如果后面有数字小于第一个数的话就肯定是NO了,这题的坑点就是如果前面很长一串 ...

  6. centos6.5下安装mysql数据库

    centos6.5下安装mysql数据库 1.安装mysql数据库:yum install mysql-server 2.临时启动数据库:service mysqld start 3.开机启动数据库: ...

  7. 【visio】数据流图

    率属于 软件和数据库 又名 Gane-Sarson图,数据流图示描述系统数据流程关系的工具,它可以综合的反映出数据在系统中的来源.流动.处理和存储情况,可以将数据流形象具体的表现出来. 在大型项目中, ...

  8. AcWing 868. 筛质数 线性筛法

    #include <iostream> #include <algorithm> using namespace std; ; int primes[N], cnt; bool ...

  9. [2020BUAA软工助教]第1次个人作业

    热身作业(阅读) 一.前言 我认为人生就是一次次地从<存在>到<光明>. 二.软件工程师的成长 博客索引 同学们在上这门课的时候基本都是大三,觉得在大学里,到教室来听课有意思么 ...

  10. const和defin区别

    (1)类型的安全性检查:const常量有数据类型,而define定义宏常量没有数据类型.则编译器可以对前者进行类型安全检查,而对后者只进行字符替换,没有类型安全检查(字符替换时可能会产生意料不到的错误 ...