题面

看到数据范围这么小,第一眼想到爆搜。

然而这样做的复杂度是 \(\mathcal{O}(n! \times n)\) 的,明显会 TLE。

于是考虑状压 DP。

我们设 \(dp_{i,j}\) 表示当前走过的集合为 \(i\),且停留在 \(j\) 号点的最短路径长度。

转移的话可以枚举一个点 \(k\),意为从 \(k\) 号点走到点 \(j\),走过的集合变成了 \(i\)。然后就有了转移方程:\(dp_{i,j}=\min\{dp_{i-2^j,k}+a_{k,j}\}\),其中 \(a_{k,j}\) 表示点 \(k\) 到点 \(j\) 的距离。

注意点的标号从 \(0\) 开始。

这里介绍一个判断 \(j\) 号点是否出现在集合 \(i\) 中的技巧:直接判断 i >> j & 1 是否为 \(\text{true}\) 即可。

#include <bits/stdc++.h>
#define DEBUG fprintf(stderr, "Passing [%s] line %d\n", __FUNCTION__, __LINE__)
#define itn int
#define gI gi using namespace std; typedef long long LL;
typedef pair <int, int> PII;
typedef pair <int, PII> PIII; inline int gi()
{
int f = 1, x = 0; char c = getchar();
while (c < '0' || c > '9') {if (c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return f * x;
} inline LL gl()
{
LL f = 1, x = 0; char c = getchar();
while (c < '0' || c > '9') {if (c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return f * x;
} int n, m, a[23][23], dp[(1 << 20) + 5][23]; int main()
{
//freopen(".in", "r", stdin);
//freopen(".out", "w", stdout);
n = gi();
for (int i = 0; i < n; i+=1)
for (int j = 0; j < n; j+=1)
a[i][j] = gi();
memset(dp, 0x3f, sizeof dp);
dp[1][0] = 0;
for (int i = 0; i < (1 << n); i+=1)
{
for (int j = 0; j < n; j+=1)
{
if (i >> j & 1) //判断集合 i 中是否含有 j
{
for (int k = 0; k < n; k+=1)
{
if ((i - (1 << j)) >> k & 1) //判断没有访问 j 之前有没有访问过 k
{
dp[i][j] = min(dp[i][j], dp[i - (1 << j)][k] + a[k][j]); //转移
}
}
}
}
}
printf("%d\n", dp[(1 << n) - 1][n - 1]);
return 0;
}

题解【AcWing91】最短Hamilton路径的更多相关文章

  1. 最短Hamilton路径【状压DP】

    给定一张 nn 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次. 输入 ...

  2. AcWing 91. 最短Hamilton路径

    今天第一次在\(AcWing\)这个网站上做题,来发一下此网站的第一篇题解 传送门 思路 直接枚举的话时间复杂度为\(O(n*n!)\) 复杂度显然爆炸,所以我们用二进制枚举,这样就可以把复杂度降到\ ...

  3. # 最短Hamilton路径(二进制状态压缩)

    最短Hamilton路径(二进制状态压缩) 题目描述:n个点的带权无向图,从0-n-1,求从起点0到终点n-1的最短Hamilton路径(Hamilton路径:从0-n-1不重不漏的每个点恰好进过一次 ...

  4. 『最短Hamilton路径 状态压缩DP』

    状压DP入门 最短Hamilton路径 Description 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Hamil ...

  5. 位运算 - 最短Hamilton路径

    给定一张 n 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次. 输入格 ...

  6. 0103 最短Hamilton路径【状压DP】

    0103 最短Hamilton路径 0x00「基本算法」例题 描述 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Ham ...

  7. 最短Hamilton路径

    题目描述 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径. Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每 ...

  8. 最短Hamilton路径-状压dp解法

    最短Hamilton路径 时间限制: 2 Sec  内存限制: 128 MB 题目描述 给定一张 n(n≤20) 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamil ...

  9. ACAG 0x01-4 最短Hamilton路径

    ACAG 0x01-4 最短Hamilton路径 论为什么书上标程跑不过这道题-- 首先,这道题与今年CSP-S2的D1T3有着异曲同工之妙,那就是--都有$O(n!)$的做法!(大雾) 这道题的正解 ...

  10. 最短Hamilton路径 数位dp

    最短Hamilton路径 #include<bits/stdc++.h> using namespace std; ; <<maxn][maxn]; int maps[maxn ...

随机推荐

  1. 普通版js运动框架

    //获取样式 function getStyle(obj){ if(obj.currentStyle){ return obj.currentStyle[attr]; }else{ return ge ...

  2. Sunset-Sunrise: Vulnhub Walkthrough

    靶机链接: https://www.vulnhub.com/entry/sunset-sunrise,406/ 主机扫描: 端口扫描: HTTP 80 目录枚举未果 HTTP 8080 Google ...

  3. NPM 包管理工具详解,使用教程

    NPM 包管理工具 1.1 定义:什么是 NPM NPM 全称 Node Package Manager,它是 JavaScript 的包管理工具, 并且是 Node.js 平台的默认包管理工具.通过 ...

  4. opencv —— HoughLines、HoughLinesP 霍夫线变换原理(标准霍夫线变换、多尺度霍夫线变换、累积概率霍夫线变换)及直线检测

    霍夫线变换的原理 一条直线在图像二维空间可由两个变量表示,有以下两种情况: ① 在笛卡尔坐标系中:可由参数斜率和截距(k,b)表示. ② 在极坐标系中:可由参数极经和极角(r,θ)表示. 对于霍夫线变 ...

  5. Excel开启宏以后保存是会提示安全警告,怎么取消

    如果你用的(应该)是2007以上版本的话 请点左上角的EXCEL图标,EXCEL选项,信任中心,信任中心设置,个人信息选项,保存时从文件属性中删除个人信息前面的对号取消.确定就可以了. (补充:如果你 ...

  6. 实验一Git代码版本管理

    GIT代码版本管理 实验目的: 1)了解分布式分布式版本控制系统的核心机理: 2) 熟练掌握git的基本指令和分支管理指令: 实验内容: 1)安装git 2)初始配置git ,git init git ...

  7. Android中饼状图的绘制

    https://blog.csdn.net/cen_yuan/article/details/52204281

  8. Android ListView的批量处理(多选/反选/删除)

    在Android开发中经常遇到使用ListView的情况,有时候需要的不仅仅是列表显示,还有长按列表进行多选,并且批量删除的情况,在这里记录一下自己的所学. 先上效果图: 几个需要用到的核心方法: / ...

  9. WebApp开发-Zepto

    zepto.js自己去官网下载哈. DOM操作 $(document).ready(function(){ var $cr = $("<div class='cr'>插入的div ...

  10. 《趣谈 Linux 操作系统》学习笔记(二):对 Linux 操作系统的理解

    首先,我们知道操作系统是管理和控制计算机硬件与软件资源的计算机程序.这里把操作系统想象为一个软件外包公司,其内核就相当于这家外包公司的老板,那么我们可以把自己的角色切换成这家外包公司的老板,设身处地的 ...