图像开运算与闭运算定义

二值图像开运算的数学表达式为:

g(x, y)=open[f(x, y ), B]=dilate{erode[f(x, y),B],B}

二值图像的开运算事实上就是先作腐蚀运算,再作膨胀运算。

二值图像闭运算的数学表达式为:

g(x, y)=close[f(x, y ), B]=erode{dilate[f(x, y),B],B}

二值图像的闭运算事实上就是先作膨胀运算,再作腐蚀运算

        private void opening_Click(object sender, EventArgs e)
{
if (curBitmap != null)
{
struction struForm = new struction();
struForm.Text = "开运算结构元素";
if (struForm.ShowDialog() == DialogResult.OK)
{
Rectangle rect = new Rectangle(, , curBitmap.Width, curBitmap.Height);
System.Drawing.Imaging.BitmapData bmpData = curBitmap.LockBits(rect, System.Drawing.Imaging.ImageLockMode.ReadWrite, curBitmap.PixelFormat);
IntPtr ptr = bmpData.Scan0;
int bytes = curBitmap.Width * curBitmap.Height;
byte[] grayValues = new byte[bytes];
Marshal.Copy(ptr, grayValues, , bytes); byte flagStru = struForm.GetStruction; byte[] temp1Array = new byte[bytes];
byte[] tempArray = new byte[bytes];
for (int i = ; i < bytes; i++)
{
tempArray[i] = temp1Array[i] = ;
} switch (flagStru)
{
case 0x11:
//腐蚀运算
for (int i = ; i < curBitmap.Height; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (grayValues[i * curBitmap.Width + j] == &&
grayValues[i * curBitmap.Width + j + ] == &&
grayValues[i * curBitmap.Width + j - ] == )
{
temp1Array[i * curBitmap.Width + j] = ;
} }
}
//膨胀运算
for (int i = ; i < curBitmap.Height; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (temp1Array[i * curBitmap.Width + j] == ||
temp1Array[i * curBitmap.Width + j + ] == ||
temp1Array[i * curBitmap.Width + j - ] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
case 0x21:
//腐蚀运算
for (int i = ; i < curBitmap.Height; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (grayValues[i * curBitmap.Width + j] == &&
grayValues[i * curBitmap.Width + j + ] == &&
grayValues[i * curBitmap.Width + j - ] == &&
grayValues[i * curBitmap.Width + j + ] == &&
grayValues[i * curBitmap.Width + j - ] == )
{
temp1Array[i * curBitmap.Width + j] = ;
} }
}
//膨胀运算
for (int i = ; i < curBitmap.Height; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (temp1Array[i * curBitmap.Width + j] == ||
temp1Array[i * curBitmap.Width + j + ] == ||
temp1Array[i * curBitmap.Width + j - ] == ||
temp1Array[i * curBitmap.Width + j + ] == ||
temp1Array[i * curBitmap.Width + j - ] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
case 0x12:
//腐蚀运算
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width; j++)
{
if (grayValues[i * curBitmap.Width + j] == &&
grayValues[(i - ) * curBitmap.Width + j] == &&
grayValues[(i + ) * curBitmap.Width + j] == )
{
temp1Array[i * curBitmap.Width + j] = ;
} }
}
//膨胀运算
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width; j++)
{
if (temp1Array[i * curBitmap.Width + j] == ||
temp1Array[(i - ) * curBitmap.Width + j] == ||
temp1Array[(i + ) * curBitmap.Width + j] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
case 0x22:
//腐蚀运算
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width; j++)
{
if (grayValues[i * curBitmap.Width + j] == &&
grayValues[(i - ) * curBitmap.Width + j] == &&
grayValues[(i + ) * curBitmap.Width + j] == &&
grayValues[(i - ) * curBitmap.Width + j] == &&
grayValues[(i + ) * curBitmap.Width + j] == )
{
temp1Array[i * curBitmap.Width + j] = ;
} }
}
//膨胀运算
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width; j++)
{
if (temp1Array[i * curBitmap.Width + j] == ||
temp1Array[(i - ) * curBitmap.Width + j] == ||
temp1Array[(i + ) * curBitmap.Width + j] == ||
temp1Array[(i - ) * curBitmap.Width + j] == ||
temp1Array[(i + ) * curBitmap.Width + j] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
case 0x14:
//腐蚀运算
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (grayValues[i * curBitmap.Width + j] == &&
grayValues[(i - ) * curBitmap.Width + j] == &&
grayValues[(i + ) * curBitmap.Width + j] == &&
grayValues[i * curBitmap.Width + j + ] == &&
grayValues[i * curBitmap.Width + j - ] == )
{
temp1Array[i * curBitmap.Width + j] = ;
} }
}
//膨胀运算
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (temp1Array[i * curBitmap.Width + j] == ||
temp1Array[(i - ) * curBitmap.Width + j] == ||
temp1Array[(i + ) * curBitmap.Width + j] == ||
temp1Array[i * curBitmap.Width + j + ] == ||
temp1Array[i * curBitmap.Width + j - ] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
case 0x24:
//腐蚀运算
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (grayValues[i * curBitmap.Width + j] == &&
grayValues[(i - ) * curBitmap.Width + j] == &&
grayValues[(i + ) * curBitmap.Width + j] == &&
grayValues[(i - ) * curBitmap.Width + j] == &&
grayValues[(i + ) * curBitmap.Width + j] == &&
grayValues[i * curBitmap.Width + j + ] == &&
grayValues[i * curBitmap.Width + j - ] == &&
grayValues[i * curBitmap.Width + j + ] == &&
grayValues[i * curBitmap.Width + j - ] == )
{
temp1Array[i * curBitmap.Width + j] = ;
} }
}
//膨胀运算
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (temp1Array[i * curBitmap.Width + j] == ||
temp1Array[(i - ) * curBitmap.Width + j] == ||
temp1Array[(i + ) * curBitmap.Width + j] == ||
temp1Array[(i - ) * curBitmap.Width + j] == ||
temp1Array[(i + ) * curBitmap.Width + j] == ||
temp1Array[i * curBitmap.Width + j + ] == ||
temp1Array[i * curBitmap.Width + j - ] == ||
temp1Array[i * curBitmap.Width + j + ] == ||
temp1Array[i * curBitmap.Width + j - ] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
case 0x18:
//腐蚀运算
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (grayValues[i * curBitmap.Width + j] == &&
grayValues[(i - ) * curBitmap.Width + j] == &&
grayValues[(i + ) * curBitmap.Width + j] == &&
grayValues[i * curBitmap.Width + j + ] == &&
grayValues[i * curBitmap.Width + j - ] == &&
grayValues[(i - ) * curBitmap.Width + j - ] == &&
grayValues[(i + ) * curBitmap.Width + j - ] == &&
grayValues[(i - ) * curBitmap.Width + j + ] == &&
grayValues[(i + ) * curBitmap.Width + j + ] == )
{
temp1Array[i * curBitmap.Width + j] = ;
} }
}
//膨胀运算
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (temp1Array[i * curBitmap.Width + j] == ||
temp1Array[(i - ) * curBitmap.Width + j] == ||
temp1Array[(i + ) * curBitmap.Width + j] == ||
temp1Array[i * curBitmap.Width + j + ] == ||
temp1Array[i * curBitmap.Width + j - ] == ||
temp1Array[(i - ) * curBitmap.Width + j - ] == ||
temp1Array[(i + ) * curBitmap.Width + j - ] == ||
temp1Array[(i - ) * curBitmap.Width + j + ] == ||
temp1Array[(i + ) * curBitmap.Width + j + ] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
case 0x28:
//腐蚀运算
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (grayValues[(i - ) * curBitmap.Width + j - ] == &&
grayValues[(i - ) * curBitmap.Width + j - ] == &&
grayValues[(i - ) * curBitmap.Width + j] == &&
grayValues[(i - ) * curBitmap.Width + j + ] == &&
grayValues[(i - ) * curBitmap.Width + j + ] == &&
grayValues[(i - ) * curBitmap.Width + j - ] == &&
grayValues[(i - ) * curBitmap.Width + j - ] == &&
grayValues[(i - ) * curBitmap.Width + j] == &&
grayValues[(i - ) * curBitmap.Width + j + ] == &&
grayValues[(i - ) * curBitmap.Width + j + ] == &&
grayValues[i * curBitmap.Width + j - ] == &&
grayValues[i * curBitmap.Width + j - ] == &&
grayValues[i * curBitmap.Width + j] == &&
grayValues[i * curBitmap.Width + j + ] == &&
grayValues[i * curBitmap.Width + j + ] == &&
grayValues[(i + ) * curBitmap.Width + j - ] == &&
grayValues[(i + ) * curBitmap.Width + j - ] == &&
grayValues[(i + ) * curBitmap.Width + j] == &&
grayValues[(i + ) * curBitmap.Width + j + ] == &&
grayValues[(i + ) * curBitmap.Width + j + ] == &&
grayValues[(i + ) * curBitmap.Width + j - ] == &&
grayValues[(i + ) * curBitmap.Width + j - ] == &&
grayValues[(i + ) * curBitmap.Width + j] == &&
grayValues[(i + ) * curBitmap.Width + j + ] == &&
grayValues[(i + ) * curBitmap.Width + j + ] == )
{
temp1Array[i * curBitmap.Width + j] = ;
} }
}
//膨胀运算
for (int i = ; i < curBitmap.Height - ; i++)
{
for (int j = ; j < curBitmap.Width - ; j++)
{
if (temp1Array[(i - ) * curBitmap.Width + j - ] == ||
temp1Array[(i - ) * curBitmap.Width + j - ] == ||
temp1Array[(i - ) * curBitmap.Width + j] == ||
temp1Array[(i - ) * curBitmap.Width + j + ] == ||
temp1Array[(i - ) * curBitmap.Width + j + ] == ||
temp1Array[(i - ) * curBitmap.Width + j - ] == ||
temp1Array[(i - ) * curBitmap.Width + j - ] == ||
temp1Array[(i - ) * curBitmap.Width + j] == ||
temp1Array[(i - ) * curBitmap.Width + j + ] == ||
temp1Array[(i - ) * curBitmap.Width + j + ] == ||
temp1Array[i * curBitmap.Width + j - ] == ||
temp1Array[i * curBitmap.Width + j - ] == ||
temp1Array[i * curBitmap.Width + j] == ||
temp1Array[i * curBitmap.Width + j + ] == ||
temp1Array[i * curBitmap.Width + j + ] == ||
temp1Array[(i + ) * curBitmap.Width + j - ] == ||
temp1Array[(i + ) * curBitmap.Width + j - ] == ||
temp1Array[(i + ) * curBitmap.Width + j] == ||
temp1Array[(i + ) * curBitmap.Width + j + ] == ||
temp1Array[(i + ) * curBitmap.Width + j + ] == ||
temp1Array[(i + ) * curBitmap.Width + j - ] == ||
temp1Array[(i + ) * curBitmap.Width + j - ] == ||
temp1Array[(i + ) * curBitmap.Width + j] == ||
temp1Array[(i + ) * curBitmap.Width + j + ] == ||
temp1Array[(i + ) * curBitmap.Width + j + ] == )
{
tempArray[i * curBitmap.Width + j] = ;
} }
}
break;
default:
MessageBox.Show("错误的结构元素!");
break;
} grayValues = (byte[])tempArray.Clone(); System.Runtime.InteropServices.Marshal.Copy(grayValues, , ptr, bytes);
curBitmap.UnlockBits(bmpData);
} Invalidate();
}
}
        #region 关于图像尺寸的说明

        //本代码只能处理8位深度的512*512图像。可自行修改,如修改3位水平方向结构元素代码:

        //01修改成如下代码即可处理任意尺寸的8位深度的图像
//int bytes = bmpData.Stride * curBitmap.Height;
//for (int i = 0; i < curBitmap.Height; i++)
//{
// for (int j = 1; j < curBitmap.Width - 1; j++)
// {
// if (grayValues[i * bmpData.Stride + j] == 0 &&
// grayValues[i * bmpData.Stride + j + 3] == 0 &&
// grayValues[i * bmpData.Stride + j - 1] == 0)
// {
// tempArray[i * bmpData.Stride + j] = 0;
// tempArray[i * bmpData.Stride + j + 1] = 0;
// tempArray[i * bmpData.Stride + j + 2] = 0;
// }
// }
//} //for (int i = 0; i < curBitmap.Height; i++)
//{
// for (int j = 1; j < curBitmap.Width - 1; j++)
// {
// if (grayValues[i * bmpData.Stride + j] == 0 ||
// grayValues[i * bmpData.Stride + j + 3] == 0 ||
// grayValues[i * bmpData.Stride + j - 1] == 0)
// {
// tempArray[i * bmpData.Stride + j] = 0;
// tempArray[i * bmpData.Stride + j + 1] = 0;
// tempArray[i * bmpData.Stride + j + 2] = 0;
// }
// }
//} //02修改成如下代码即可处理任意尺寸的24位深度的图像
//int bytes = bmpData.Stride * curBitmap.Height;
//for (int i = 0; i < curBitmap.Height; i++)
//{
// for (int j = 4; j < curBitmap.Width * 3 - 3; j += 3)
// {
// if (grayValues[i * bmpData.Stride + j] == 0 &&
// grayValues[i * bmpData.Stride + j + 3] == 0 &&
// grayValues[i * bmpData.Stride + j - 1] == 0)
// {
// tempArray[i * bmpData.Stride + j] = 0;
// tempArray[i * bmpData.Stride + j + 1] = 0;
// tempArray[i * bmpData.Stride + j + 2] = 0;
// }
// }
//} //for (int i = 0; i < curBitmap.Height; i++)
//{
// for (int j = 1; j < curBitmap.Width - 1; j++)
// {
// if (grayValues[i * bmpData.Stride + j] == 0 ||
// grayValues[i * bmpData.Stride + j + 3] == 0 ||
// grayValues[i * bmpData.Stride + j - 1] == 0)
// {
// tempArray[i * bmpData.Stride + j] = 0;
// tempArray[i * bmpData.Stride + j + 1] = 0;
// tempArray[i * bmpData.Stride + j + 2] = 0;
// }
// }
//}
#endregion

c#数字图像处理(十三)图像开运算与闭运算的更多相关文章

  1. 学习 opencv---(10)形态学图像处理(2):开运算,闭运算,形态学梯度,顶帽,黒帽合辑

    上篇文章中,我们重点了解了腐蚀和膨胀这两种最基本的形态学操作,而运用这两个基本操作,我们可以实现更高级的形态学变换. 所以,本文的主角是OpenCV中的morphologyEx函数,它利用基本的膨胀和 ...

  2. 【OpenCV新手教程之十一】 形态学图像处理(二):开运算、闭运算、形态学梯度、顶帽、黑帽合辑

    本系列文章由@浅墨_毛星云 出品,转载请注明出处. 文章链接:http://blog.csdn.net/poem_qianmo/article/details/23184547 作者:毛星云(浅墨) ...

  3. Python 图像处理 OpenCV (9):图像处理形态学开运算、闭运算以及梯度运算

    前文传送门: 「Python 图像处理 OpenCV (1):入门」 「Python 图像处理 OpenCV (2):像素处理与 Numpy 操作以及 Matplotlib 显示图像」 「Python ...

  4. Win8 Metro(C#) 数字图像处理--1 图像打开,保存

    原文:Win8 Metro(C#) 数字图像处理--1 图像打开,保存 作为本专栏的第一篇,必不可少的需要介绍一下图像的打开与保存,一便大家后面DEMO的制作.   Win8Metro编程中,图像相关 ...

  5. opencv 4 图像处理(2 形态学滤波:腐蚀与膨胀,开运算、闭运算、形态学梯度、顶帽、黑帽)

    腐蚀与膨胀 膨胀(求局部最大值)(dilate函数) #include <opencv2/core/core.hpp> #include <opencv2/highgui/highg ...

  6. opencv-图像形态学之开运算、闭运算、形态学梯度、顶帽、黑帽合辑

    转自:https://blog.csdn.net/poem_qianmo/article/details/24599073 1.1 开运算(Opening Operation) 开运算(Opening ...

  7. Win8 Metro(C#)数字图像处理--4图像颜色空间描述

    原文:Win8 Metro(C#)数字图像处理--4图像颜色空间描述  图像颜色空间是图像颜色集合的数学表示,本小节将针对几种常见颜色空间做个简单介绍. /// <summary> / ...

  8. 机器学习进阶-图像形态学操作-开运算与闭运算 1.cv2.morphologyEx(进行各类形态学变化) 2.op=cv2.MORPH_OPEN(先腐蚀后膨胀) 3.op=cv2.MORPH_CLOSE(先膨胀后腐蚀)

    1.cv2.morphologyEx(src, op, kernel) 进行各类形态学的变化 参数说明:src传入的图片,op进行变化的方式, kernel表示方框的大小 2.op =  cv2.MO ...

  9. OpenCV:图像的开运算与闭运算

    导包: import numpy as np import cv2 import matplotlib.pyplot as plt def show(image): plt.imshow(image) ...

随机推荐

  1. js 处理json

    json 分为两种结构  数组  对象 对象  { } 对象里的键值对  1.键值对之间用冒号链接  2.键必须用“”包裹  3.值如果是字符串  就用“”包裹   如果是数字  则不需要 4.键值对 ...

  2. Vue CLI 创建项目

    使用命令创建VUE项目 运行以下命令[vue create [项目名]]来创建一个新项目: vue create hello-world 警告 如果你在 Windows 上通过 minTTY 使用 G ...

  3. Python11_文件的读写

    1.打开和关闭文件(文件对象的方法open,close) file object = open(file_name [, access_mode][, buffering]) 各个参数的细节如下: f ...

  4. slim的简单使用

    1.在命令行进入项目根目录,然后用composer下载slim composer require slim/slim "^3.0" 2.下载slim完成后,在php文件中引入req ...

  5. 优化器,SGD+Momentum;Adagrad;RMSProp;Adam

    Optimization 随机梯度下降(SGD): 当损失函数在一个方向很敏感在另一个方向不敏感时,会产生上面的问题,红色的点以“Z”字形梯度下降,而不是以最短距离下降:这种情况在高维空间更加普遍. ...

  6. ES6学习之二

    本文的学习来自技术胖大神的教程:https://jspang.com/ 1扩展运算符和rest运算符 扩展运算符和rest运算符,它们都是…(三个点). 它们有很多相似之处,甚至很多时候不用特意去区分 ...

  7. 【转载】实现a元素href URL链接自动刷新或新窗口打开

    又是我偶像的新文,这个小技巧的用户体验真的非常非常棒! 文章转载自 张鑫旭-鑫空间-鑫生活 http://www.zhangxinxu.com/ 原文链接:https://www.zhangxinxu ...

  8. $Luogu2512/CH122/AcWing122$糖果传递 模拟

    $Luogu$  $AcWing$ $Description$ 有$n$个小朋友坐成一圈,每人有$a_i$个糖果. 每人只能给左右两人传递糖果. 每人每次传递一个糖果代价为$1$. 求使所有人获得均等 ...

  9. 22.Python安装和卸载第三方模块方法

    安装和卸载第三方开源模块的步骤:下例,安装urllib3模块的步骤. 1.安装开源模块步骤: 按键盘windows键+r键,输出cmd回车.或开始->windows系统->命令提示符: 输 ...

  10. kubespy 用bash实现的k8s动态调试工具

    原文位于 https://github.com/huazhihao/kubespy/blob/master/implement-a-k8s-debug-plugin-in-bash.md 背景 Kub ...