【算法】数学

【题解】

1.平均数:累加前缀和。//听说要向下取整?

2.中位数:双堆法,大于中位数存入小顶堆,小于中位数存入大顶堆,保证小顶堆内数字数量≥大顶堆,奇数则取小堆顶,偶数则取两堆顶/2。

3.方差=(平方的均值)-(均值的平方),即对于a,b,c,s2=(a2+b2+c2)/3-((a+b+c)/3)2

#include<stdio.h>
#include<algorithm>
#include<cstring>
#include<set>
#include<cctype>
using namespace std;
const int maxn=;
multiset<int>q2;//小顶堆
struct cmp
{
bool operator() (const int a,const int b)const
{return a>b;}
};
multiset<int,cmp>q1;//大顶堆
int n,k,a[maxn],sum[maxn],tot1,tot2;
long long sums[maxn];
double ans2;
int read()
{
char c;int s=,t=;
while(!isdigit(c=getchar()))if(c=='-')t=-;
do{s=s*+c-'';}while(isdigit(c=getchar()));
return s*t;
}
void compair()
{
if(tot1>tot2)
{
int now=*q1.begin();tot1--;//?????????
q1.erase(q1.begin());//一定要删除指定位置,删除multiset中的键值会把全部键值等于的都删掉。
q2.insert(now);tot2++;
}
if(tot2->tot1)
{
int now=*q2.begin();tot2--;
q2.erase(q2.begin());
q1.insert(now);tot1++;
}
if((tot1+tot2)%)
ans2=*q2.begin();
else ans2=1.0*(*q1.begin()+*q2.begin())/;
}
int main()
{
n=read(),k=read();
sum[]=;sums[]=;
int tot=,task=;
for(int i=;i<=n;i++)
{
task=read();
if(task==)
{
tot++;
a[tot]=read();
if(tot>k)
{if(a[tot-k]<ans2)q1.erase(q1.find(a[tot-k])),tot1--;else q2.erase(q2.find(a[tot-k])),tot2--;}
sum[tot]=sum[tot-]+a[tot];
if(a[tot]>=ans2)q2.insert(a[tot]),tot2++;
else q1.insert(a[tot]),tot1++;
compair();
sums[tot]=sums[tot-]+a[tot]*a[tot];
}
else if(task==)
{
if(tot<k)printf("%d.00\n",(sum[tot])/tot);else
printf("%d.00\n",(sum[tot]-sum[tot-k])/k);
}
else if(task==)
{
printf("%.2lf\n",ans2);
}
else if(task==)
{
if(tot<k)printf("%.2lf\n",1.0*(sums[tot])/tot-1.0*(1.0*sum[tot]/tot)*(1.0*sum[tot]/tot));else//1.0进入
printf("%.2lf\n",1.0*(sums[tot]-sums[tot-k])/k-1.0*(1.0*(sum[tot]-sum[tot-k])/k)*(1.0*(sum[tot]-sum[tot-k])/k));
}
}
return ;
}

【51NOD】数据流中的算法的更多相关文章

  1. 51nod 1785 数据流中的算法 | STL的应用

    51nod 1785 数据流中的算法 题面 动态求平均数.方差.中位数. 题解 这道题的坑: 平均数在答案中是向下取整输出并在后面添加".00" 方差:平方的平均数减去平均数的平方 ...

  2. 51nod 1785 数据流中的算法 (方差计算公式)

    1785 数据流中的算法 基准时间限制:1.5 秒 空间限制:131072 KB 分值: 20 难度:3级算法题   51nod近日上线了用户满意度检测工具,使用高级人工智能算法,通过用户访问时间.鼠 ...

  3. AC日记——数据流中的算法 51nod 1785

    数据流中的算法 思路: 线段树模拟: 时间刚刚卡在边界上,有时超时一个点,有时能过: 来,上代码: #include <cstdio> #include <cstring> # ...

  4. 【51nod 1785】数据流中的算法

    Description 51nod近日上线了用户满意度检测工具,使用高级人工智能算法,通过用户访问时间.鼠标轨迹等特征计算用户对于网站的满意程度.   现有的统计工具只能统计某一个窗口中,用户的满意程 ...

  5. [算法]最小的K个数和数据流中的中位数

    1. 最小的K个数 题目描述 输入n个整数,找出其中最小的K个数.例如输入4,5,1,6,2,7,3,8这8个数字,则最小的4个数字是1,2,3,4. 思路 Java 中的PriorityQueue是 ...

  6. 数据流中的中位数 Find Median from Data Stream

    2019-04-17 16:34:50 问题描述: 问题求解: class MedianFinder { PriorityQueue<Integer> smaller; PriorityQ ...

  7. [LeetCode解题报告] 703. 数据流中的第K大元素

    题目描述 设计一个找到数据流中第K大元素的类(class).注意是排序后的第K大元素,不是第K个不同的元素. 你的 KthLargest 类需要一个同时接收整数 k 和整数数组nums 的构造器,它包 ...

  8. 剑指offer63:数据流中的中位数

    题目描述: 如何得到一个数据流中的中位数?如果从数据流中读出奇数个数值,那么中位数就是所有数值排序之后位于中间的数值.如果从数据流中读出偶数个数值,那么中位数就是所有数值排序之后中间两个数的平均值. ...

  9. Motion Detection Algorithms视频中运动检测算法源代码及演示代码

    原文地址:http://www.codesoso.com/code/Motion_Detection.aspx 本文实现了在连续视频数据流中几种不同的运动检测算法,他们都是基于当前帧图像和前一帧图像的 ...

随机推荐

  1. JavaWeb基础 - 会话

    会话概述 什么是会话 简单的理解:用户打开浏览器,点击多个超链接,访问Web服务器上多个资源,然后关闭浏览器,整个过程称之为一次会话. 需要解决的问题 每个用户在使用浏览器与服务器会话的过程中,会产生 ...

  2. Alpha-5

    前言 失心疯病源5 团队代码管理github 站立会议 队名:PMS 530雨勤(组长) 今天完成了那些任务 14:30~15:30 阅读blob分析相关论文,找到一篇很早年的论文,但是作者讲解十分细 ...

  3. Winform 子窗体设置刷新父窗体

    方法1:所有权法 父窗体:Form1    子窗体:Form2 //Form1:窗体代码 //需要有一个公共的刷新方法 public void Refresh_Method() { //... } / ...

  4. div、span绑定内容改变事件

    内容改变事件onchange只适用于form表单标签(input.select.textarea) 当需要对div.span标签进行内容改变监听则无法适用,查阅了一些资料发现jquery有针对的方法, ...

  5. Java判断数据库表是否存在的方法

    一.需求 最近在写一个程序,需要取数据库表的数据之前,需要先查看数据库是否存在该表否则就跳过该表. 二.解决方案(目前想到两种,以后遇到还会继续添加): .建立JDBC数据源,通过Java.sql.D ...

  6. WPF如何将数据库中的二进制图片数据显示在Image控件上

    首先在xaml文件里定义一个Image控件,取名为img MemoryStream stream = new MemoryStream(获得的数据库对象): BitMapImage bmp = new ...

  7. 楼房 洛谷1382 && codevs2995

    P1382 楼房 题目描述 地平线(x轴)上有n个矩(lou)形(fang),用三个整数h[i],l[i],r[i]来表示第i个矩形:矩形左下角为(l[i],0),右上角为(r[i],h[i]).地平 ...

  8. [洛谷P3627][APIO2009]抢掠计划

    题目大意:给你一张$n(n\leqslant5\times10^5)$个点$m(m\leqslant5\times10^5)$条边的有向图,有点权,给你起点和一些可能的终点.问从起点开始,到任意一个终 ...

  9. POJ.3624 Charm Bracelet(DP 01背包)

    POJ.3624 Charm Bracelet(DP 01背包) 题意分析 裸01背包 代码总览 #include <iostream> #include <cstdio> # ...

  10. 项目管理---git----快速使用git笔记(六)------本地开发与远程仓库的交互----常用git命令

    无论是我们自己把本地的项目新建了一个远程仓库 还是 从远程仓库获取到了 本地,现在我们都在本地有了一份项目代码,服务器上对应有项目代码的信息. 现在我们就开始进行交互操作了. 也就是说明一些在 正常开 ...