[Luogu 2261] CQOI2007 余数求和

<题目链接>


这一定是我迄今为止见过最短小精悍的省选题了,核心代码 \(4\) 行,总代码 \(12\) 行,堪比小凯的疑惑啊。

这题一看暴力很好打,然而 \(10^{9}\) 的范围注定会卡掉暴力。

所以我们要用除法分块来优化。

由题意得:\(ans = \sum_{i=1}^{n} k \bmod i\)

我们知道,\(a \bmod b = a - b \times \lfloor \frac{a}{b} \rfloor\)

因此,\(ans = \sum_{i=1}^{n} k - i \times \lfloor \frac{k}{i} \rfloor = nk - \sum_{i=1}^{n} i \times \lfloor \frac{k}{i} \rfloor\)

我们用样例来打表找规律,发现 \(\lfloor \frac{k}{i} \rfloor\) 分别在一定的区域内相等,如下表所示:

\(i\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(7\) \(8\) \(9\) \(10\)
\(\lfloor \frac{k}{i} \rfloor\) \(5\) \(2\) \(1\) \(1\) \(1\) \(0\) \(0\) \(0\) \(0\) \(0\)

可见 \(\lfloor \frac{k}{i} \rfloor\) 分成了 \(3\) 块,我们只需要计算 \(n \times k\) 减去每一块的和即可。

首先枚举块的左边界 \(l\),并根据左边界和 \(k\) 计算出右边界 \(r\)。

令 \(t = \lfloor \frac{k}{l} \rfloor\),分两种情况讨论:

  • \(t \neq 0\),则 \(r = \min (\lfloor \frac{k}{t} \rfloor , n)\);

  • \(t = 0\),则 \(r = n\)。

(请自行打草稿验证。)

右边界有了,每一块的和也就可以计算出了。

每一块的和 \(=\) 当前块的 \(t\) \(\times\) 当前块元素个数 \(\times\) 当前块 \(i\) 的平均值 \(= t \times (r-l+1) \times (l+r) \div 2\)

当前块处理完后,令 \(l = r + 1\),开始计算下一块,直到计算至 \(n\)。

除法分块就是这样,在莫比乌斯反演优化中也有作用的。

给出最短小精悍的省选题代码。

记得开long long!

#include <algorithm>
#include <cstdio>
using std::min;
long long n,k,ans;
int main(int argc,char *argv[])
{
scanf("%lld %lld",&n,&k);
for(long long l=1,r,t;l<=n;l=r+1)
r=(t=k/l) ? min(k/t,n) : n,ans-=t*(r-l+1)*(l+r)>>1;
printf("%lld\n",ans+n*k);
return 0;
}

谢谢阅读。

[Luogu 2261] CQOI2007 余数求和的更多相关文章

  1. [Luogu P2261] [CQOI2007]余数求和 (取模计算)

    题面 传送门:https://www.luogu.org/problemnew/show/P2261 Solution 这题显然有一个O(n)的直接计算法,60分到手. 接下来我们就可以拿出草稿纸推一 ...

  2. 洛谷 2261 [CQOI2007]余数求和

    题目戳这里 一句话题意 求 \(\sum_{i=1}^{n} (k ~~\texttt{mod} ~~i)\) Solution 30分做法: 说实话并不知道怎么办. 60分做法: 很明显直接一遍o( ...

  3. LUOGU P2261 [CQOI2007]余数求和(数论分块)

    传送门 解题思路 数论分块,首先将 \(k\%a\) 变成 \(k-a*\left\lfloor\dfrac{k}{a}\right\rfloor\)形式,那么\(\sum\limits_{i=1}^ ...

  4. Luogu P2261 [CQOI2007]余数求和

    最近中考放假几天都在怼一道BJOI2018的水题,但卡死在90pts跑不动啊! 然后今天发现终于过了然而Hack的数据全RE了然后就开始找新的题目来找回信心. 然后发现智能推荐里有这道题,然后想了1m ...

  5. 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)

    上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...

  6. 洛谷 P2261 [CQOI2007]余数求和 解题报告

    P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...

  7. [洛谷P2261] [CQOI2007]余数求和

    洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...

  8. 洛谷——P2261 [CQOI2007]余数求和

    P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...

  9. 题解 P2261【[CQOI2007]余数求和】

    P2261[[CQOI2007]余数求和] 蒟蒻终于不看题解写出了一个很水的蓝题,然而题解不能交了 虽然还看了一下自己之前的博客 题目要求: \[\sum_{i=1}^{n}{k \bmod i} \ ...

随机推荐

  1. 无法启动mysql服务 错误1067:进程意外中止

    这个错误在前些周遇到过,没有解决,直接粗暴的卸载重装了,自己用的是wampserver集成环境,重装的后果是mysql里面的一些已有的数据库就没有了,有点小悲剧,不过幸好都是一些测试用的数据库,后面直 ...

  2. iOS开发给UIView添加动画Animation

    self.testView需要添加动画的view 1.翻转动画 [UIView beginAnimations:@"doflip" context:nil]; [UIView se ...

  3. Zigbee安全基础篇Part.2

    原文地址: https://www.4hou.com/wireless/14252.html 导语:本文将会探讨ZigBee标准提供的安全模型,用于安全通信的各种密钥.ZigBee建议的密钥管理方法以 ...

  4. YaoLingJump开发者日志(四)

      这么有意思的游戏没有剧情怎么行?开始剧情的搭建.   用到了LGame中的AVGScreen,确实是个好东西呢,只需要准备图片和对话脚本就行了.   经过不断的ps,yy,ps,yy,游戏开头的剧 ...

  5. overflow:scroll 在ios 滚动卡顿

    使用 -webkit-overflow-scrolling 属性控制元素在移动设备上是否使用滚动回弹效果. 值 auto 使用普通滚动, 当手指从触摸屏上移开,滚动会立即停止. touch 使用具有回 ...

  6. error C2143: 语法错误 : 缺少“;”(在“类型”的前面)

    C编程老是遇到这个问题: 错误 error C2143: 语法错误 : 缺少“;”(在“类型”的前面) d:\kinectproject\ceshiglad\ceshiglad\shili.c ces ...

  7. Socket_SSH-3(粘包)

    粘包:两次数据粘到一起了.在Windows中基本看不出来效果. 服务器端的配置: import socket,os,time server=socket.socket() server.bind((' ...

  8. [洛谷P3979]遥远的国度

    题目大意:有一棵$n$个点的树,每个点有一个点权,有三种操作: $1\;x:$把根变成$x$ $2\;u\;v\;x:$把路径$u->v$上的点权改为$x$ $3\;x:$询问以$x$为根的子树 ...

  9. POJ3678:Katu Puzzle——题解

    http://poj.org/problem?id=3678 总觉得这题比例题简单. 设a为x取0的点,a+n为x取1的点. 我们还是定义a到b表示取a必须取b. 那么我们有: 当AND: 1.当c= ...

  10. BZOJ5334:[TJOI2018]数学计算——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=5334 小豆现在有一个数x,初始值为1. 小豆有Q次操作,操作有两种类型:  1 m: x = x ...