[Luogu 2261] CQOI2007 余数求和
[Luogu 2261] CQOI2007 余数求和
这一定是我迄今为止见过最短小精悍的省选题了,核心代码 \(4\) 行,总代码 \(12\) 行,堪比小凯的疑惑啊。
这题一看暴力很好打,然而 \(10^{9}\) 的范围注定会卡掉暴力。
所以我们要用除法分块来优化。
由题意得:\(ans = \sum_{i=1}^{n} k \bmod i\)
我们知道,\(a \bmod b = a - b \times \lfloor \frac{a}{b} \rfloor\)
因此,\(ans = \sum_{i=1}^{n} k - i \times \lfloor \frac{k}{i} \rfloor = nk - \sum_{i=1}^{n} i \times \lfloor \frac{k}{i} \rfloor\)
我们用样例来打表找规律,发现 \(\lfloor \frac{k}{i} \rfloor\) 分别在一定的区域内相等,如下表所示:
\(i\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) |
---|---|---|---|---|---|---|---|---|---|---|
\(\lfloor \frac{k}{i} \rfloor\) | \(5\) | \(2\) | \(1\) | \(1\) | \(1\) | \(0\) | \(0\) | \(0\) | \(0\) | \(0\) |
可见 \(\lfloor \frac{k}{i} \rfloor\) 分成了 \(3\) 块,我们只需要计算 \(n \times k\) 减去每一块的和即可。
首先枚举块的左边界 \(l\),并根据左边界和 \(k\) 计算出右边界 \(r\)。
令 \(t = \lfloor \frac{k}{l} \rfloor\),分两种情况讨论:
\(t \neq 0\),则 \(r = \min (\lfloor \frac{k}{t} \rfloor , n)\);
\(t = 0\),则 \(r = n\)。
(请自行打草稿验证。)
右边界有了,每一块的和也就可以计算出了。
每一块的和 \(=\) 当前块的 \(t\) \(\times\) 当前块元素个数 \(\times\) 当前块 \(i\) 的平均值 \(= t \times (r-l+1) \times (l+r) \div 2\)
当前块处理完后,令 \(l = r + 1\),开始计算下一块,直到计算至 \(n\)。
除法分块就是这样,在莫比乌斯反演优化中也有作用的。
给出最短小精悍的省选题代码。
记得开long long!
#include <algorithm>
#include <cstdio>
using std::min;
long long n,k,ans;
int main(int argc,char *argv[])
{
scanf("%lld %lld",&n,&k);
for(long long l=1,r,t;l<=n;l=r+1)
r=(t=k/l) ? min(k/t,n) : n,ans-=t*(r-l+1)*(l+r)>>1;
printf("%lld\n",ans+n*k);
return 0;
}
谢谢阅读。
[Luogu 2261] CQOI2007 余数求和的更多相关文章
- [Luogu P2261] [CQOI2007]余数求和 (取模计算)
题面 传送门:https://www.luogu.org/problemnew/show/P2261 Solution 这题显然有一个O(n)的直接计算法,60分到手. 接下来我们就可以拿出草稿纸推一 ...
- 洛谷 2261 [CQOI2007]余数求和
题目戳这里 一句话题意 求 \(\sum_{i=1}^{n} (k ~~\texttt{mod} ~~i)\) Solution 30分做法: 说实话并不知道怎么办. 60分做法: 很明显直接一遍o( ...
- LUOGU P2261 [CQOI2007]余数求和(数论分块)
传送门 解题思路 数论分块,首先将 \(k\%a\) 变成 \(k-a*\left\lfloor\dfrac{k}{a}\right\rfloor\)形式,那么\(\sum\limits_{i=1}^ ...
- Luogu P2261 [CQOI2007]余数求和
最近中考放假几天都在怼一道BJOI2018的水题,但卡死在90pts跑不动啊! 然后今天发现终于过了然而Hack的数据全RE了然后就开始找新的题目来找回信心. 然后发现智能推荐里有这道题,然后想了1m ...
- 整除分块学习笔记+[CQOI2007]余数求和(洛谷P2261,BZOJ1257)
上模板题例题: [CQOI2007]余数求和 洛谷 BZOJ 题目大意:求 $\sum^n_{i=1}k\ mod\ i$ 的值. 等等……这题就学了三天C++的都会吧? $1\leq n,k\leq ...
- 洛谷 P2261 [CQOI2007]余数求和 解题报告
P2261 [CQOI2007]余数求和 题意: 求\(G(n,k)=\sum_{i=1}^n k \ mod \ i\) 数据范围: \(1 \le n,k \le 10^9\) \(G(n,k)\ ...
- [洛谷P2261] [CQOI2007]余数求和
洛谷题目链接:[CQOI2007]余数求和 题目背景 数学题,无背景 题目描述 给出正整数n和k,计算G(n, k)=k mod 1 + k mod 2 + k mod 3 + - + k mod n ...
- 洛谷——P2261 [CQOI2007]余数求和
P2261 [CQOI2007]余数求和 关键在于化简公式,题目所求$\sum_{i=1}^{n}k\mod i$ 简化式子,也就是$\sum_{i=1}^{n}(k-\frac{k}{i}\time ...
- 题解 P2261【[CQOI2007]余数求和】
P2261[[CQOI2007]余数求和] 蒟蒻终于不看题解写出了一个很水的蓝题,然而题解不能交了 虽然还看了一下自己之前的博客 题目要求: \[\sum_{i=1}^{n}{k \bmod i} \ ...
随机推荐
- nginx配置和网站的部署
环境: CentOS Linux release 7.3.1611 (Core) nginx version: nginx/1.13.4 PHP 5.4.16 (cli) (built: Nov 6 ...
- 软件功能-东北师大站-第三次作业(PSP)
1.本周PSP 2.本周进度条 3.本周累计进度图 代码累计折线图 博文字数累计折线图 本周PSP饼状图
- 刷ROM必備的clockworkmod recovery
Desire HD 手機早早就 Root,前陣子也S-OFF 變成工程版的 HBOOT(ENG S-OFF),想要刷機的朋友一定常常聽人提起 clockworkmod recovery ,接下來就是安 ...
- 一个demo让你彻底理解Android中触摸事件的分发
注:本文涉及的demo的地址:https://github.com/absfree/TouchDispatch 1. 触摸动作及事件序列 (1)触摸事件的动作 触摸动作一共有三种:ACTION_DOW ...
- 后端设置cookie写不到前端页面
javax.servlet.http.Cookie cookie = new javax.servlet.http.Cookie("id",session.getId()); co ...
- Windows网络编程系列教程之四:Select模型
讲一下套接字模式和套接字I/O模型的区别.先说明一下,只针对Winsock,如果你要骨头里挑鸡蛋把UNIX下的套接字概念来往这里套,那就不关我的事. 套接字模式:阻塞套接字和非阻塞套接字.或者叫同步套 ...
- YaoLingJump开发者日志(二)
熟悉了一点LGame里的套路,可以正式开工了. 增加了一个信息栏,显示得分.硬币数.生命值和当前关卡(仿照了超级玛丽的布局). 准备瑶玲的各种动画(静止.奔跑.跳跃.趴下.休息和死亡等). ...
- Vue脚手架开发使用sass
vue默认采用的是原生的css,如果想要使用css预编译工具,比如sass,需要下载对应的scss的loader, 具体是 npm install --save-dev sass-loader npm ...
- 理解BitSet
先来看几道面试题: 1.统计40亿个数据中没有出现的数据,将40亿个不同数据进行排序. 2.现在有1千万个随机数,随机数的范围在1到1亿之间,要求写出一种算法,将1到1亿之间没有在随机数中的数求出来. ...
- html 怎么去掉网页的滚动条
<style type="text/css"> body{ overflow:scroll; overflow-x:hidden; } </style> 这 ...