BZOJ4813 CQOI2017小Q的棋盘(树形dp)
设f[i][j]为由i号点开始在子树内走j步最多能经过多少格点,g[i][j]为由i号点开始在子树内走j步且回到i最多能经过多少格点,转移显然。
#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
using namespace std;
#define ll long long
#define N 110
char getc(){char c=getchar();while ((c<'A'||c>'Z')&&(c<'a'||c>'z')&&(c<''||c>'')) c=getchar();return c;}
int gcd(int n,int m){return m==?n:gcd(m,n%m);}
int read()
{
int x=,f=;char c=getchar();
while (c<''||c>'') {if (c=='-') f=-;c=getchar();}
while (c>=''&&c<='') x=(x<<)+(x<<)+(c^),c=getchar();
return x*f;
}
int n,m,p[N],f[N][N],g[N][N],t;
struct data{int to,nxt;
}edge[N<<];
void addedge(int x,int y){t++;edge[t].to=y,edge[t].nxt=p[x],p[x]=t;}
void dfs(int k,int from)
{
f[k][]=g[k][]=;for (int i=;i<=m;i++) f[k][i]=g[k][i]=-n;
for (int i=p[k];i;i=edge[i].nxt)
if (edge[i].to!=from)
{
dfs(edge[i].to,k);
for (int x=m;x>=;x--)
for (int y=;y+<=x;y++)
f[k][x]=max(f[k][x],max(g[k][x-y-]+f[edge[i].to][y],(x-y->=?f[k][x-y-]+g[edge[i].to][y]:-n)));
for (int x=m;x>=;x--)
for (int y=;y+<=x;y++)
g[k][x]=max(g[k][x],g[k][x-y-]+g[edge[i].to][y]);
} }
int main()
{
#ifndef ONLINE_JUDGE
freopen("bzoj4813.in","r",stdin);
freopen("bzoj4813.out","w",stdout);
const char LL[]="%I64d\n";
#else
const char LL[]="%lld\n";
#endif
n=read(),m=read();
for (int i=;i<n;i++)
{
int x=read()+,y=read()+;
addedge(x,y),addedge(y,x);
}
dfs(,);
for (int i=;i<m;i++) f[][m]=max(f[][m],f[][i]);
cout<<f[][m];
return ;
}
BZOJ4813 CQOI2017小Q的棋盘(树形dp)的更多相关文章
- BZOJ 1813 [Cqoi2017]小Q的棋盘 ——树形DP
唔,貌似以前做过这样差不多的题目. 用$f(i,0/1)$表示从某一点出发,只能走子树的情况下回到根.不回到根的最多经过不同的点数. 然后就可以DP辣 #include <map> #in ...
- luogu 3698 [CQOI2017]小Q的棋盘 树形dp
Code: #include <bits/stdc++.h> #define N 107 #define setIO(s) freopen(s".in","r ...
- bzoj 4813: [Cqoi2017]小Q的棋盘 [树形背包dp]
4813: [Cqoi2017]小Q的棋盘 题意: 某poj弱化版?树形背包 据说还可以贪心... #include <iostream> #include <cstdio> ...
- [BZOJ4813][CQOI2017]小Q的棋盘(DP,贪心)
4813: [Cqoi2017]小Q的棋盘 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 804 Solved: 441[Submit][Statu ...
- [bzoj4813][Cqoi2017]小Q的棋盘
来自FallDream的博客,未经允许,请勿转载,谢谢. 小Q正在设计一种棋类游戏.在小Q设计的游戏中,棋子可以放在棋盘上的格点中.某些格点之间有连线,棋子只能在有连线的格点之间移动.整个棋盘上共有V ...
- 2019.03.11 bzoj4813: [Cqoi2017]小Q的棋盘(贪心)
传送门 考虑最后所有走过的点构成的树,显然除了最长链走一遍以外每条轻链都走两遍. 于是求一波最长链搞一搞就完了. 注意几个小细节特判qwq 代码: #include<bits/stdc++.h& ...
- BZOJ_4813_[Cqoi2017]小Q的棋盘_dfs
BZOJ_4813_[Cqoi2017]小Q的棋盘_dfs Description 小Q正在设计一种棋类游戏.在小Q设计的游戏中,棋子可以放在棋盘上的格点中.某些格点之间有连线,棋子只能 在有连线的格 ...
- 洛谷 P3698 [CQOI2017]小Q的棋盘 解题报告
P3698 [CQOI2017]小Q的棋盘 题目描述 小 Q 正在设计一种棋类游戏. 在小 Q 设计的游戏中,棋子可以放在棋盘上的格点中.某些格点之间有连线,棋子只能在有连线的格点之间移动.整个棋盘上 ...
- 【BZOJ4813】[CQOI2017]小Q的棋盘(贪心)
[BZOJ4813][CQOI2017]小Q的棋盘(贪心) 题面 BZOJ 洛谷 题解 果然是老年选手了,这种题都不会做了.... 先想想一个点如果被访问过只有两种情况,第一种是进入了这个点所在的子树 ...
随机推荐
- 20154327 Exp5 MSF基础应用
基础问题回答 用自己的话解释什么是exploit,payload,encode. exploit漏洞利用,一般出现漏洞后,根据一些大佬们给出的POC尝试去进行漏洞利用. payload攻击负载,是我们 ...
- 封装一个Automapper单例
public class DataModule : IModule { public void Configure(IMapperConfigurationExpression cfg) { //cf ...
- 389. Valid Sudoku【LintCode java】
Description Determine whether a Sudoku is valid. The Sudoku board could be partially filled, where e ...
- centos端口管理
centos 6.5 ###############配置filter表防火墙############### #清除预设表filter中的所有规则链的规则iptables -F #清除预设表filter ...
- beego 笔记
1.开发文档 https://beego.me/docs/intro/ 2.bee run projectname demo controller package autoscaler import ...
- 图像质量评价指标之 PSNR 和 SSIM
1. PSNR (Peak Signal-to-Noise Ratio) 峰值信噪比 给定一个大小为 \(m×n\) 的干净图像 \(I\) 和噪声图像 \(K\),均方误差 \((MSE)\) 定义 ...
- CodeForces 908C. New Year and Curling 解题报告 Java
1. 思路 这题实际上是个几何问题——两个外相切的圆,由勾股定理,他们的纵坐标有以下的规律: 则有$$y_{n+1} = y_{n} + \sqrt{(2r)^2 - (x_{n} - x_{n+1} ...
- LeetCode - 136. Single Number - ( C++ ) - 解题报告 - 位运算思路 xor
1.题目大意 Given an array of integers, every element appears twice except for one. Find that single one. ...
- Alpha阶段中间产物——Thunder团队
Part One 版本控制 git地址:https://git.coding.net/lick468/iReader.git Part Two 软件功能说明书 相关链接:http://www.cnbl ...
- Beta版本软件使用说明
北京航空航天大学计算机学院 远航1617 小组 产品版本: Beta版本 产品名称:Crawling is going on 文档作者:杨帆 文档日期:2013/12/24 1. 引言 1.1 ...