BZOJ5301:[CQOI2018]异或序列——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=5301
https://www.luogu.org/problemnew/show/P4462
已知一个长度为 n 的整数数列 a[1],a[2],…,a[n] ,给定查询参数 l、r ,问在 [l,r] 区间内,有多少连续子序列满足异或和等于 k 。也就是说,对于所有的 x,y (l≤x≤y≤r),能够满足a[x]^a[x+1]^…^a[y]=k的x,y有多少组。
开始时还在想怕不是一棵主席树(滑稽)。
想多了,莫队足以解决。
为了方便求区间异或和,把a处理为前缀异或和。
剩下的看代码吧,不太好说,就是注意左端点的移动是要把它之前的点增/删,因为l~r的异或=a[r]^a[l-1]。
#include<cstdio>
#include<queue>
#include<cctype>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=1e5+;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct qu{
int pos,l,r;
}q[N];
int a[N],ans[N],cnt[N],sum,n,m,k,s;
inline int bel(int x){return (x-)/s+;}
bool cmp(qu b,qu c){
return bel(b.l)==bel(c.l)?b.r<c.r:b.l<c.l;
}
inline void add(int x){
sum+=cnt[x^k];
cnt[x]++;
}
inline void del(int x){
cnt[x]--;
sum-=cnt[x^k];
}
int main(){
n=read(),m=read(),k=read();
s=sqrt(n);
for(int i=;i<=n;i++)a[i]=a[i-]^read();
for(int i=;i<=m;i++){
q[i].pos=i;q[i].l=read();q[i].r=read();
}
sort(q+,q+m+,cmp);
int ql=,qr=;cnt[]++;
for(int i=;i<=m;i++){
while(qr<q[i].r)add(a[++qr]);
while(qr>q[i].r)del(a[qr--]);
while(ql<q[i].l)del(a[ql-]),ql++;
while(ql>q[i].l)ql--,add(a[ql-]);
ans[q[i].pos]=sum;
}
for(int i=;i<=m;i++)printf("%d\n",ans[i]);
return ;
}
+++++++++++++++++++++++++++++++++++++++++++
+本文作者:luyouqi233。 +
+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/ +
+++++++++++++++++++++++++++++++++++++++++++
BZOJ5301:[CQOI2018]异或序列——题解的更多相关文章
- BZOJ5301: [Cqoi2018]异或序列(莫队)
5301: [Cqoi2018]异或序列 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 400 Solved: 291[Submit][Status ...
- [bzoj5301][Cqoi2018]异或序列_莫队
异或序列 bzoj-5301 Cqoi-2018 题目大意:题目链接. 注释:略. 想法: 由于a^a=0这个性质,我们将所有的数变成异或前缀和. 所求就变成了求所有的$l_i\le x<y\l ...
- bzoj5301[CQOI2018]异或序列
题意 已知一个长度为 n 的整数数列 a[1],a[2],-,a[n] ,给定查询参数 l.r ,问在 [l,r] 区间内,有多少连续子 序列满足异或和等于 k . 也就是说,对于所有的 x,y (l ...
- BZOJ5301:[CQOI2018]异或序列(莫队)
Description 已知一个长度为 n 的整数数列 a[1],a[2],…,a[n] ,给定查询参数 l.r ,问在 [l,r] 区间内,有多少连续子 序列满足异或和等于 k . 也就是说,对于所 ...
- BZOJ5301 [Cqoi2018]异或序列 【莫队】
题目链接 BZOJ5301 题解 莫队水题 BZOJ400AC纪念 #include<algorithm> #include<iostream> #include<cst ...
- 2018.08.12 bzoj5301: [Cqoi2018]异或序列(前缀和+莫队)
传送门 简单的异或前缀和处理+莫队统计答案. 惊奇的发现无论开不开long long都能跑过... 代码: #include<bits/stdc++.h> #define N 100005 ...
- bzoj 5301 [Cqoi2018]异或序列 莫队
5301: [Cqoi2018]异或序列 Time Limit: 10 Sec Memory Limit: 512 MBSubmit: 204 Solved: 155[Submit][Status ...
- bzoj 5301: [Cqoi2018]异或序列 (莫队算法)
链接:https://www.lydsy.com/JudgeOnline/problem.php?id=5301 题面; 5301: [Cqoi2018]异或序列 Time Limit: 10 Sec ...
- 「luogu4462」[CQOI2018] 异或序列
「luogu4462」[CQOI2018]异或序列 一句话题意 输入 \(n\) 个数,给定\(k\),共 \(m\) 组询问,输出第 \(i\) 组询问 \(l_i\) \(r_i\) 中有多少个连 ...
随机推荐
- 「题目代码」P1039~P1043(Java)
P1039 谭浩强C语言(第三版)习题4.9 import java.util.*; import java.io.*; import java.math.BigInteger; public cla ...
- OSG-漫游
本文转至http://www.cnblogs.com/shapherd/archive/2010/08/10/osg.html 作者写的比较好,再次收藏,希望更多的人可以看到这个文章 互联网是是一个相 ...
- MATLAB实现连续周期信号的频谱分析(正余弦波信号举例)
关于MATLAB实现连续信号的频谱分析,以正余弦波信号频谱分析为例分析如下: 1.含有频率f ,2f和3f的正弦波叠加信号,即: 其中,f =500Hz.试采用Matlab仿真软件对该信号进行频谱分析 ...
- JVM之G1收集器
Garbage-First,面向服务端的垃圾收集器. 并行与并发:充分利用多核环境减少停顿时间, 分代收集:不需要配合其它收集器 空间整合:整体上看属于标记整理算法,局部(region之间)数据复制算 ...
- spark写入ES(动态模板)
使用es-hadoop插件,主要使用elasticsearch-spark-20_2.11-6.2.x.jar 官网:https://www.elastic.co/guide/en/elasticse ...
- MySQL数据库怎么截取字符串?
函数: 1.从左开始截取字符串 left(str, length) 说明:left(被截取字段,截取长度) 例:select left(content,200) as abstract from my ...
- python常用命令—终端安装win32的两种方法
1, pip install pywin32 2, pip install pypiwin32
- [2018 ACL Long] 对话系统
[NLG - E2E - knowledge guide generation] 1. Knowledge Diffusion for Neural Dialogue Generation ( Ci ...
- mysql数据库配置主从同步
MySQL主从同步的作用 .可以作为一种备份机制,相当于热备份 .可以用来做读写分离,均衡数据库负载 MySQL主从同步的步骤 一.准备操作 .主从数据库版本一致,建议版本5.5以上 .主从数据库数据 ...
- JavaScript中childNodes和children的区别
我在学习JavaScript对DOM操作的过程中,发现了使用childNodes属性,得不到我想要的结果,因此我就从JavaScript高级程序设计中了解了childNodes和children的区别 ...