https://www.lydsy.com/JudgeOnline/problem.php?id=5301

https://www.luogu.org/problemnew/show/P4462

已知一个长度为 n 的整数数列 a[1],a[2],…,a[n] ,给定查询参数 l、r ,问在 [l,r] 区间内,有多少连续子序列满足异或和等于 k 。
也就是说,对于所有的 x,y (l≤x≤y≤r),能够满足a[x]^a[x+1]^…^a[y]=k的x,y有多少组。

开始时还在想怕不是一棵主席树(滑稽)。

想多了,莫队足以解决。

为了方便求区间异或和,把a处理为前缀异或和。

剩下的看代码吧,不太好说,就是注意左端点的移动是要把它之前的点增/删,因为l~r的异或=a[r]^a[l-1]。

#include<cstdio>
#include<queue>
#include<cctype>
#include<cstring>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
const int N=1e5+;
inline int read(){
int X=,w=;char ch=;
while(!isdigit(ch)){w|=ch=='-';ch=getchar();}
while(isdigit(ch))X=(X<<)+(X<<)+(ch^),ch=getchar();
return w?-X:X;
}
struct qu{
int pos,l,r;
}q[N];
int a[N],ans[N],cnt[N],sum,n,m,k,s;
inline int bel(int x){return (x-)/s+;}
bool cmp(qu b,qu c){
return bel(b.l)==bel(c.l)?b.r<c.r:b.l<c.l;
}
inline void add(int x){
sum+=cnt[x^k];
cnt[x]++;
}
inline void del(int x){
cnt[x]--;
sum-=cnt[x^k];
}
int main(){
n=read(),m=read(),k=read();
s=sqrt(n);
for(int i=;i<=n;i++)a[i]=a[i-]^read();
for(int i=;i<=m;i++){
q[i].pos=i;q[i].l=read();q[i].r=read();
}
sort(q+,q+m+,cmp);
int ql=,qr=;cnt[]++;
for(int i=;i<=m;i++){
while(qr<q[i].r)add(a[++qr]);
while(qr>q[i].r)del(a[qr--]);
while(ql<q[i].l)del(a[ql-]),ql++;
while(ql>q[i].l)ql--,add(a[ql-]);
ans[q[i].pos]=sum;
}
for(int i=;i<=m;i++)printf("%d\n",ans[i]);
return ;
}

+++++++++++++++++++++++++++++++++++++++++++

+本文作者:luyouqi233。               +

+欢迎访问我的博客:http://www.cnblogs.com/luyouqi233/ +

+++++++++++++++++++++++++++++++++++++++++++

BZOJ5301:[CQOI2018]异或序列——题解的更多相关文章

  1. BZOJ5301: [Cqoi2018]异或序列(莫队)

    5301: [Cqoi2018]异或序列 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 400  Solved: 291[Submit][Status ...

  2. [bzoj5301][Cqoi2018]异或序列_莫队

    异或序列 bzoj-5301 Cqoi-2018 题目大意:题目链接. 注释:略. 想法: 由于a^a=0这个性质,我们将所有的数变成异或前缀和. 所求就变成了求所有的$l_i\le x<y\l ...

  3. bzoj5301[CQOI2018]异或序列

    题意 已知一个长度为 n 的整数数列 a[1],a[2],-,a[n] ,给定查询参数 l.r ,问在 [l,r] 区间内,有多少连续子 序列满足异或和等于 k . 也就是说,对于所有的 x,y (l ...

  4. BZOJ5301:[CQOI2018]异或序列(莫队)

    Description 已知一个长度为 n 的整数数列 a[1],a[2],…,a[n] ,给定查询参数 l.r ,问在 [l,r] 区间内,有多少连续子 序列满足异或和等于 k . 也就是说,对于所 ...

  5. BZOJ5301 [Cqoi2018]异或序列 【莫队】

    题目链接 BZOJ5301 题解 莫队水题 BZOJ400AC纪念 #include<algorithm> #include<iostream> #include<cst ...

  6. 2018.08.12 bzoj5301: [Cqoi2018]异或序列(前缀和+莫队)

    传送门 简单的异或前缀和处理+莫队统计答案. 惊奇的发现无论开不开long long都能跑过... 代码: #include<bits/stdc++.h> #define N 100005 ...

  7. bzoj 5301 [Cqoi2018]异或序列 莫队

    5301: [Cqoi2018]异或序列 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 204  Solved: 155[Submit][Status ...

  8. bzoj 5301: [Cqoi2018]异或序列 (莫队算法)

    链接:https://www.lydsy.com/JudgeOnline/problem.php?id=5301 题面; 5301: [Cqoi2018]异或序列 Time Limit: 10 Sec ...

  9. 「luogu4462」[CQOI2018] 异或序列

    「luogu4462」[CQOI2018]异或序列 一句话题意 输入 \(n\) 个数,给定\(k\),共 \(m\) 组询问,输出第 \(i\) 组询问 \(l_i\) \(r_i\) 中有多少个连 ...

随机推荐

  1. VMWare虚拟机下 centos network is unreachable 问题的解决

    vi /etc/sysconfig/network-scripts/ifcfg-eth0 DEVICE=eth0 BOOTPROTO=static BROADCAST=192.168.1.255 HW ...

  2. Python Road

    引子 雁离群兮不知所归,路遥远兮吾将何往   Python Road[第一篇]:Python简介 Python Road[第二篇]:Python基本数据类型 Python Road[第三篇]:Pyth ...

  3. 「日常训练」 Genghis Khan the Conqueror(HDU-4126)

    题意 给定\(n\)个点和\(m\)条无向边(\(n\le 3000\)),需要将这\(n\)个点连通.但是有\(Q\)次(\(Q\le 10^4\))等概率的破坏,每次破坏会把\(m\)条边中的某条 ...

  4. 记录---Testin上新手测试用例设计实战---碎乐3.2.0

    平台上给的版本是碎乐3.12版的,但是平台上给的安装包下载不了,所以加群咨询之后给出了直接去手机应用商店下载搜索到的版本的对策.所以就那应用商店中找到的3.2.0版本来设计测试用例.因为任务中没有给出 ...

  5. Linux命令应用大词典-第38章 网络命令

    38.1 traceroute:显示跟踪到网络主机的路由数据包 38.2 mli-tool:查看.操纵网络接口状态 38.3 ifconfig:显示和配置网络接口 38.4 ifdown:关闭网络接口 ...

  6. ADO.NET基础学习-----四种模型,防止SQL注入

    1.ExcuteNonQuery 执行非查询语句,返回受影响的行数. // 1.ExcuteNonQuery string sqlconn = "Data Source=wss;Initia ...

  7. Java 输出对象为字符串 工具类

    public static String reflectionToString(Object o){ if(o == null) return StringUtils.EMPTY; StringBui ...

  8. leetcode-位1的个数(位与运算)

    位1的个数 编写一个函数,输入是一个无符号整数,返回其二进制表达式中数字位数为 ‘1’ 的个数(也被称为汉明重量). 示例 : 输入: 11 输出: 3 解释: 整数 11 的二进制表示为 00000 ...

  9. 181. Flip Bits【LintCode, by java】

    Description Determine the number of bits required to flip if you want to convert integer n to intege ...

  10. 爬虫1.1-基础知识+requests库

    目录 爬虫-基础知识+requests库 1. 状态返回码 2. URL各个字段解释 2. requests库 3. requests库爬虫的基本流程 爬虫-基础知识+requests库 关于html ...