POJ3177:Redundant Paths(并查集+桥)
Redundant Paths
| Time Limit: 1000MS | Memory Limit: 65536K | |
| Total Submissions: 19316 | Accepted: 8003 |
题目链接:http://poj.org/problem?id=3177
Description:
In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the herd are forced to cross near the Tree of Rotten Apples. The cows are now tired of often being forced to take a particular path and want to build some new paths so that they will always have a choice of at least two separate routes between any pair of fields. They currently have at least one route between each pair of fields and want to have at least two. Of course, they can only travel on Official Paths when they move from one field to another.
Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way.
There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.
Input:
Line 1: Two space-separated integers: F and R
Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.
Output:
Line 1: A single integer that is the number of new paths that must be built.
Sample Input:
7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7
Sample Output:
2
题意:
给出一个无向图,问最少加多少条边,图中不存在桥。
题解:
还是先对图进行缩点,然后将图变成一颗树,然后我们考虑加最少的边让这个图不存在桥。
这时,我们加边的话,就会形成一条环,环上面所有的边都不为桥。那么我们考虑尽量加边形成较大的环。
这样,其实就只需要把入度为1的点找出来,假设其个数为cnt,那么答案就是(cnt+1)/2了。
代码如下:
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <iostream>
#include <queue>
using namespace std;
typedef long long ll;
const int N = , M = ;
int n,m,cnt;
struct Edge{
int u,v,next;
bool operator < (const Edge &A)const{
if(u==A.u) return v<A.v;
return u<A.u;
}
}e[M<<],g[M<<];
int T,tot;
int dfn[N],low[N],cut[N],f[N],d[N],num[N],head[N];
void adde(int u,int v){
e[tot].u=u;e[tot].v=v;e[tot].next=head[u];head[u]=tot++;
}
void init(){
T=;tot=;cnt=;
memset(head,-,sizeof(head));
memset(cut,,sizeof(cut));
memset(dfn,,sizeof(dfn));
}
int find(int x){
return f[x]==x ? f[x] : f[x]=find(f[x]);
}
int same(int x,int y){
return find(x)==find(y);
}
void Union(int x,int y){
int fx=find(x),fy=find(y);
if(fx!=fy) f[fx]=fy;
}
void Tarjan(int u,int pre){
dfn[u]=low[u]=++T;
for(int i=head[u];i!=-;i=e[i].next){
int v=e[i].v;
if(v==pre) continue ;
if(!dfn[v]){
Tarjan(v,u);
low[u]=min(low[u],low[v]);
if(low[v]>dfn[u]){
cut[v]=;
}else Union(u,v);
}else{
low[u]=min(low[u],dfn[v]);
}
}
}
int main(){
scanf("%d%d",&n,&m);
init();
for(int i=;i<=m;i++){
int u,v;
scanf("%d%d",&u,&v);
if(u>v) swap(u,v);
adde(u,v);adde(v,u);
g[i].u=u;g[i].v=v;
}
sort(g+,g+m+);
for(int i=;i<=n;i++) f[i]=i;
Tarjan(,);
for(int i=;i<=m;i++){
int u=g[i].u,v=g[i].v;
if(g[i].u==g[i-].u&&g[i].v==g[i-].v) continue ;
if(same(u,v)) continue ;
int fx=find(u),fy=find(v);
if(!num[fx]) num[fx]=++cnt;
if(!num[fy]) num[fy]=++cnt;
d[num[fx]]++;d[num[fy]]++;
}
int ans = ;
for(int i=;i<=cnt;i++) if(d[i]==) ans++;
cout<<(ans+)/;
return ;
}
POJ3177:Redundant Paths(并查集+桥)的更多相关文章
- [POJ3177]Redundant Paths(双联通)
在看了春晚小彩旗的E技能(旋转)后就一直在lol……额抽点时间撸一题吧…… Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Tota ...
- POJ3177 Redundant Paths 双连通分量
Redundant Paths Description In order to get from one of the F (1 <= F <= 5,000) grazing fields ...
- POJ3177 Redundant Paths(边双连通分量+缩点)
题目大概是给一个无向连通图,问最少加几条边,使图的任意两点都至少有两条边不重复路径. 如果一个图是边双连通图,即不存在割边,那么任何两个点都满足至少有两条边不重复路径,因为假设有重复边那这条边一定就是 ...
- POJ3177 Redundant Paths —— 边双联通分量 + 缩点
题目链接:http://poj.org/problem?id=3177 Redundant Paths Time Limit: 1000MS Memory Limit: 65536K Total ...
- [POJ3177]Redundant Paths(双连通图,割边,桥,重边)
题目链接:http://poj.org/problem?id=3177 和上一题一样,只是有重边. 如何解决重边的问题? 1. 构造图G时把重边也考虑进来,然后在划分边双连通分量时先把桥删去,再划分 ...
- poj3177 Redundant Paths
Description In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numb ...
- poj3352 Road Construction & poj3177 Redundant Paths (边双连通分量)题解
题意:有n个点,m条路,问你最少加几条边,让整个图变成边双连通分量. 思路:缩点后变成一颗树,最少加边 = (度为1的点 + 1)/ 2.3177有重边,如果出现重边,用并查集合并两个端点所在的缩点后 ...
- poj3177 Redundant Paths 边双连通分量
给一个无向图,问至少加入多少条边能够使图变成双连通图(随意两点之间至少有两条不同的路(边不同)). 图中的双连通分量不用管,所以缩点之后建新的无向无环图. 这样,题目问题等效于,把新图中度数为1的点相 ...
- POJ3177 Redundant Paths【双连通分量】
题意: 有F个牧场,1<=F<=5000,现在一个牧群经常需要从一个牧场迁移到另一个牧场.奶牛们已经厌烦老是走同一条路,所以有必要再新修几条路,这样它们从一个牧场迁移到另一个牧场时总是可以 ...
随机推荐
- CSS让内部元素以相反的顺序显示
代码如下: <div id="main" style=" flex-direction: row-reverse;-webkit-flex-direction: r ...
- 利用nohup后台运行jar文件包程序
Linux 运行jar包命令如下: 方式一: java -jar XXX.jar特点:当前ssh窗口被锁定,可按CTRL + C打断程序运行,或直接关闭窗口,程序退出 那如何让窗口不锁定? 方式二 j ...
- 测试模拟 白屏 / FOUC
白屏和FOUC 白屏与无样式内容闪烁(FOUC)是因为不同浏览器加载与显示页面的机制不同而造成的. 我们可以通过一个实验来进行测试和模拟白屏.FOUC的现象,让我们更好的理解白屏.FOUC. 测试de ...
- Memcache的客户端连接系列(二) Python
关键词: Memcached Python 客户端 声明:本文并非原创,转自华为云帮助中心的分布式缓存服务(Memcached)的用户指南.客户端连接方法通用,故摘抄过来分享给大家. Python ...
- 开源自动驾驶仿真平台 AirSim (1) - Unreal Engine
AirSim 官方Github: https://github.com/Microsoft/AirSim AirSim 是微软的开源自动驾驶仿真平台(其实它还能做很多事情,这里主要用于自动驾驶仿真研究 ...
- C语言文件进阶操作
Description文件a.dic.b.dic.c.dic中分别存有张三的三科成绩,每个文件都是16字节:前8个字节存储其英文名字zhangsan,后面是一个空格,其后的2个字节存储其年龄(文本方式 ...
- 腾讯云 activeMQ Illegal character in hostname at index 7
查找问题步骤: 1. /usr/local/apache-activemq-5.9.1/data/activemq.log 看一下这个.log后缀的启动日志,可以将它下载下来再看. 先尝试修改配置文 ...
- cacti添加多个tomcat监控(多端口)
1.修改tomcat的模版 Data Input Methods->Tomcat Status 把原本固定的端口,用户名和密码手动修改成变量(绿线标出的),之后save保存之后,再在Input ...
- mysql突然无法启动的问题
经常会有这样一个情况是:mysql跑了一段时间后,某一天我们需要重启服务的时候,发现停止后并不能正常启动,会报下面这种错误 这种情况发生的原因绝大多数都是权限的问题: 因为使用了一段时间后,使用期间表 ...
- Activiti5工作流笔记二
流程变量 import java.util.HashMap; import java.util.Map; import java.util.Map.Entry; import org.activiti ...