Spark机器学习

准备环境

git clone https://github.com/mikiobraun/jblas.git
cd jblas
mvn install

运行环境

cd /Users/erichan/Garden/spark-1.5.1-bin-cdh4

bin/spark-shell --name my_mlib --packages org.jblas:jblas:1.2.4-SNAPSHOT --driver-memory 4G --executor-memory 4G --driver-cores 2

推荐引擎

1 提取有效特征

val PATH = "/Users/erichan/sourcecode/book/Spark机器学习"
val rawData = sc.textFile(PATH+"/ml-100k/u.data")
rawData.first()

res1: String = 196 242 3 881250949

import org.apache.spark.mllib.recommendation.ALS
import org.apache.spark.mllib.recommendation.Rating
val rawRatings=rawData.map(_.split("\t").take(3))
val ratings = rawRatings.map { case Array(user, movie, rating) => Rating(user.toInt, movie.toInt, rating.toDouble) }
ratings.first()

res2: org.apache.spark.mllib.recommendation.Rating = Rating(196,242,3.0)

2 训练推荐模型

val model = ALS.train(ratings, 50, 10, 0.01) //rank=50, iterations=10, lambda=0.01
model.userFeatures.count

res3: Long = 943

model.productFeatures.count

res4: Long = 1682

3 使用模型

3.1.1 用户推荐
val predictedRating = model.predict(789, 123)

val userId = 789
val K = 10
val topKRecs = model.recommendProducts(userId, K)
println(topKRecs.mkString("\n"))

Rating(789,176,5.732688958436494)
Rating(789,201,5.682340265545152)
Rating(789,182,5.5902224300291214)
Rating(789,183,5.5877871075408585)
Rating(789,96,5.4425266495153455)
Rating(789,76,5.39730369058763)
Rating(789,195,5.356822356978749)
Rating(789,589,5.1464233861748925)
Rating(789,134,5.109287533257644)
Rating(789,518,5.106161562126567)

3.1.2 校验推荐
val movies = sc.textFile(PATH+"/ml-100k/u.item")
val titles = movies.map(line => line.split("\\|").take(2)).map(array => (array(0).toInt, array(1))).collectAsMap()
titles(123)
val moviesForUser = ratings.keyBy(_.user).lookup(789)
println(moviesForUser.size)

33

moviesForUser.sortBy(-_.rating).take(10).map(rating => (titles(rating.product), rating.rating)).foreach(println)

(Godfather, The (1972),5.0)
(Trainspotting (1996),5.0)
(Dead Man Walking (1995),5.0)
(Star Wars (1977),5.0)
(Swingers (1996),5.0)
(Leaving Las Vegas (1995),5.0)
(Bound (1996),5.0)
(Fargo (1996),5.0)
(Last Supper, The (1995),5.0)
(Private Parts (1997),4.0)

topKRecs.map(rating => (titles(rating.product), rating.rating)).foreach(println)

(Aliens (1986),5.732688958436494)
(Evil Dead II (1987),5.682340265545152)
(GoodFellas (1990),5.5902224300291214)
(Alien (1979),5.5877871075408585)
(Terminator 2: Judgment Day (1991),5.4425266495153455)
(Carlito's Way (1993),5.39730369058763)
(Terminator, The (1984),5.356822356978749)
(Wild Bunch, The (1969),5.1464233861748925)
(Citizen Kane (1941),5.109287533257644)
(Miller's Crossing (1990),5.106161562126567)

3.2.1 物品推荐
import org.jblas.DoubleMatrix
val aMatrix = new DoubleMatrix(Array(1.0, 2.0, 3.0))
def cosineSimilarity(vec1: DoubleMatrix, vec2: DoubleMatrix): Double = {
vec1.dot(vec2) / (vec1.norm2() * vec2.norm2())
}
val itemId = 567
val itemFactor = model.productFeatures.lookup(itemId).head
val itemVector = new DoubleMatrix(itemFactor)
cosineSimilarity(itemVector, itemVector)

res10: Double = 1.0

val sims = model.productFeatures.map{ case (id, factor) =>
val factorVector = new DoubleMatrix(factor)
val sim = cosineSimilarity(factorVector, itemVector)
(id, sim)
}
val sortedSims = sims.top(K)(Ordering.by[(Int, Double), Double] { case (id, similarity) => similarity })
println(sortedSims.mkString("\n"))

(567,1.0)
(413,0.7309050775072655)
(895,0.6992030886048359)
(853,0.6960095521899471)
(219,0.6806270119940826)
(302,0.6757242121714326)
(257,0.6721490667554395)
(160,0.6672080746572076)
(563,0.6621573120106216)
(1019,0.6591520069387037)

3.2.2 校验推荐
println(titles(itemId))

Wes Craven's New Nightmare (1994)

val sortedSims2 = sims.top(K + 1)(Ordering.by[(Int, Double), Double] { case (id, similarity) => similarity })
sortedSims2.slice(1, 11).map{ case (id, sim) => (titles(id), sim) }.mkString("\n")

res13: String =
(Tales from the Crypt Presents: Bordello of Blood (1996),0.7309050775072655)
(Scream 2 (1997),0.6992030886048359)
(Braindead (1992),0.6960095521899471)
(Nightmare on Elm Street, A (1984),0.6806270119940826)
(L.A. Confidential (1997),0.6757242121714326)
(Men in Black (1997),0.6721490667554395)
(Glengarry Glen Ross (1992),0.6672080746572076)
(Stephen King's The Langoliers (1995),0.6621573120106216)
(Die xue shuang xiong (Killer, The) (1989),0.6591520069387037)
(Evil Dead II (1987),0.655134288821937)

4 模型效果评估

4.1 均方差(Mean Squared Error,MSE)
val actualRating = moviesForUser.take(1)(0)
val predictedRating = model.predict(789, actualRating.product)
val squaredError = math.pow(predictedRating - actualRating.rating, 2.0)
val usersProducts = ratings.map{ case Rating(user, product, rating) => (user, product)}
val predictions = model.predict(usersProducts).map{
case Rating(user, product, rating) => ((user, product), rating)
}
val ratingsAndPredictions = ratings.map{
case Rating(user, product, rating) => ((user, product), rating)
}.join(predictions)
val MSE = ratingsAndPredictions.map{
case ((user, product), (actual, predicted)) => math.pow((actual - predicted), 2)
}.reduce(_ + _) / ratingsAndPredictions.count
println("Mean Squared Error = " + MSE)

Mean Squared Error = 0.08527363423596633

val RMSE = math.sqrt(MSE)
println("Root Mean Squared Error = " + RMSE)

Root Mean Squared Error = 0.2920164965134099

4.2 K值平均准确率(MAPK)
def avgPrecisionK(actual: Seq[Int], predicted: Seq[Int], k: Int): Double = {
val predK = predicted.take(k)
var score = 0.0
var numHits = 0.0
for ((p, i) <- predK.zipWithIndex) {
if (actual.contains(p)) {
numHits += 1.0
score += numHits / (i.toDouble + 1.0)
}
}
if (actual.isEmpty) {
1.0
} else {
score / scala.math.min(actual.size, k).toDouble
}
}
val actualMovies = moviesForUser.map(_.product)
val predictedMovies = topKRecs.map(_.product)
val apk10 = avgPrecisionK(actualMovies, predictedMovies, 10)
val itemFactors = model.productFeatures.map { case (id, factor) => factor }.collect()
val itemMatrix = new DoubleMatrix(itemFactors)
println(itemMatrix.rows, itemMatrix.columns)

(1682,50)

val imBroadcast = sc.broadcast(itemMatrix)
val allRecs = model.userFeatures.map{ case (userId, array) =>
val userVector = new DoubleMatrix(array)
val scores = imBroadcast.value.mmul(userVector)
val sortedWithId = scores.data.zipWithIndex.sortBy(-_._1)
val recommendedIds = sortedWithId.map(_._2 + 1).toSeq
(userId, recommendedIds)
}
val userMovies = ratings.map{ case Rating(user, product, rating) => (user, product) }.groupBy(_._1)
val K = 10
val MAPK = allRecs.join(userMovies).map{ case (userId, (predicted, actualWithIds)) =>
val actual = actualWithIds.map(_._2).toSeq
avgPrecisionK(actual, predicted, K)
}.reduce(_ + _) / allRecs.count
println("Mean Average Precision at K = " + MAPK)

Mean Average Precision at K = 0.030001472840815356

4.3 MLib内置评估函数·RMSE和MSE
import org.apache.spark.mllib.evaluation.RegressionMetrics
val predictedAndTrue = ratingsAndPredictions.map { case ((user, product), (actual, predicted)) => (actual, predicted) }
val regressionMetrics = new RegressionMetrics(predictedAndTrue)
println("Mean Squared Error = " + regressionMetrics.meanSquaredError)

Mean Squared Error = 0.08527363423596633

println("Root Mean Squared Error = " + regressionMetrics.rootMeanSquaredError)

Root Mean Squared Error = 0.2920164965134099

4.4 MLib内置评估函数·MAP(平均准确率)
import org.apache.spark.mllib.evaluation.RankingMetrics
val predictedAndTrueForRanking = allRecs.join(userMovies).map{ case (userId, (predicted, actualWithIds)) =>
val actual = actualWithIds.map(_._2)
(predicted.toArray, actual.toArray)
}
val rankingMetrics = new RankingMetrics(predictedAndTrueForRanking)
println("Mean Average Precision = " + rankingMetrics.meanAveragePrecision)

Mean Average Precision = 0.07208991526855565

val MAPK2000 = allRecs.join(userMovies).map{ case (userId, (predicted, actualWithIds)) =>
val actual = actualWithIds.map(_._2).toSeq
avgPrecisionK(actual, predicted, 2000)
}.reduce(_ + _) / allRecs.count
println("Mean Average Precision = " + MAPK2000)

Mean Average Precision = 0.07208991526855561

Spark机器学习3·推荐引擎(spark-shell)的更多相关文章

  1. Spark机器学习之推荐引擎

    一. 最小二乘法建立模型 关于最小二乘法矩阵分解,我们可以参阅: 一.矩阵分解模型. 用户对物品的打分行为可以表示成一个评分矩阵A(m*n),表示m个用户对n各物品的打分情况.如下图所示: 其中,A( ...

  2. 基于Spark ALS构建商品推荐引擎

    基于Spark ALS构建商品推荐引擎   一般来讲,推荐引擎试图对用户与某类物品之间的联系建模,其想法是预测人们可能喜好的物品并通过探索物品之间的联系来辅助这个过程,让用户能更快速.更准确的获得所需 ...

  3. 基于Azure构建PredictionIO和Spark的推荐引擎服务

    基于Azure构建PredictionIO和Spark的推荐引擎服务 1. 在Azure构建Ubuntu 16.04虚拟机 假设前提条件您已有 Azure 帐号,登陆 Azure https://po ...

  4. Azure构建PredictionIO和Spark的推荐引擎服务

    Azure构建PredictionIO和Spark的推荐引擎服务 1. 在Azure构建Ubuntu 16.04虚拟机 假设前提条件您已有 Azure 帐号,登陆 Azure https://port ...

  5. Spark高级数据分析· 3推荐引擎

    推荐算法流程 推荐算法 预备 wget http://www.iro.umontreal.ca/~lisa/datasets/profiledata_06-May-2005.tar.gz cd /Us ...

  6. 数据算法 --hadoop/spark数据处理技巧 --(7.共同好友 8. 使用MR实现推荐引擎)

    七,共同好友. 在所有用户对中找出“共同好友”. eg: a    b,c,d,g b    a,c,d,e map()->  <a,b>,<b,c,d,g> ;< ...

  7. Spark入门实战系列--8.Spark MLlib(下)--机器学习库SparkMLlib实战

    [注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .MLlib实例 1.1 聚类实例 1.1.1 算法说明 聚类(Cluster analys ...

  8. 【转载】协同过滤 & Spark机器学习实战

    因为协同过滤内容比较多,就新开一篇文章啦~~ 聚类和线性回归的实战,可以看:http://www.cnblogs.com/charlesblc/p/6159187.html 协同过滤实战,仍然参考:h ...

  9. 大规模数据分析统一引擎Spark最新版本3.3.0入门实战

    @ 目录 概述 定义 Hadoop与Spark的关系与区别 特点与关键特性 组件 集群概述 集群术语 部署 概述 环境准备 Local模式 Standalone部署 Standalone模式 配置历史 ...

随机推荐

  1. secureCRT连接不上linux的当中一个最大的原因

    之前secureCRT一直连接不上linux(我的linux版本号是Ubuntu14.04.2.用的是VirtualBox).在网上找了各种办法.但是都解决不了我的问题! 网上的解决的方法不是说没有开 ...

  2. HDU2059 龟兔赛跑 【DP】

    龟兔赛跑 Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submi ...

  3. 微信 openId

    摘要 关于微信开发的话题,例子确实已经有不少,但大部分都是人云亦云,很多小细节或者需要注意的地方却大多没有讲清楚,这令很多刚开始开发的人感觉大很迷茫.而我今天要说的话题,主要着眼于两个方面. 一:如何 ...

  4. c++ 指针(不断更新)

    c++指针只能说博大精深,在用的时候感觉好晕 1.指针类型转换 /* 在指针的强制类型转换:ptr1=(TYPE*)ptr2中,如果sizeof(ptr2的类型)大于sizeof(ptr1的类型), ...

  5. CKEDITOR 3.4.2中 按钮事件中 动态改变图标和title 获取按钮

    this.uiItems[0].className="cke_button_hui_position_type";this.uiItems[0].title="zhang ...

  6. Jmeter - 分布式部署负载机

    1. 原理图: 2.具体操作 ① 负载机 安装JDK.Jmeter[版本与Controller 调度机一致] ② 配置环境变量 ③ 负载机自定义端口号 a.进入Jmeter的bin目录,找到Jmete ...

  7. IEnumerable 与 Iqueryable 的区别

    IEnumerable 和 IQueryable   共有两组 LINQ 标准查询运算符,一组在类型为 IEnumerable<T> 的对象上运行,另一组在类型为 IQueryable&l ...

  8. 160701、理解 Promise 的工作原理

    Javascript 采用回调函数(callback)来处理异步编程.从同步编程到异步回调编程有一个适应的过程,但是如果出现多层回调嵌套,也就是我们常说的厄运的回调金字塔(Pyramid of Doo ...

  9. Linux ssh其他服务器

  10. ios 画图总结

    0 CGContextRef context = UIGraphicsGetCurrentContext(); 设置上下文1 CGContextMoveToPoint 开始画线2 CGContextA ...