垃圾福建垫底选手来看看这题。

大家怎么都写带 \(log\) 的。

我来说一个线性做法好了。

那么我们考虑枚举 \(k\) 作为翻转完的最小值。

那么构造出一个满足条件的操作,我们在 \(a_i\) 中查询一个最大的位置使 \(a_i < k\) ,那么 \(a_1\) 到 \(a_i\) 都要进行翻转,且 \(b_1 到 b_i > k\),那么这样做的次数是 \(i\) 或者 \(i - 1\)(考虑\(k\)是\(b\)且对应的\(a\)在需要翻转的区间里)的。

那么考虑对这个 \(k\) 求出一个最小的最大值\(z\),同样的我们在\(a_i\)中查询一个最小的位置使\(a_i > z\),那么\(a_i\) 到 \(a_n\)都要进行翻转,且 \(b_i\) 到 \(b_n > k\),且 \(b_i\) 到 \(b_n < z\) ,那么这样做的次数是 \(n - i + 1\) 或者 \(n - i\) (考虑 \(z\) 是 \(b\) 且对应的 \(a\) 在需要翻转的区间里)的,两边次数加起来不超过 \(m\) 。

我们考虑对这几个条件进行分析一下,首先 \(i\) 对于 \(z\) 减小是单调的,由于 \(min\) 只能下降不能上升, \(max\) 只能上升不能下降,那么对于\(z\)下降来说,他的条件会越来越苛刻。

又因为我们从小到大枚举 \(k\) ,用来满足 \(k\) 的次数会单调不降,那么我们发现,对于一个 \(z\) ,他的所有条件即 \(b_i\) 到 \(b_n > k\),且 \(b_i\) 到 \(b_n < z\) ,次数和小于 \(m\) ,在 \(k\) 上升都具有单调性,感性分析一下,在 \(k\) 上升时, \(z\) 具有单调不降的性质。

那么我们只要对 \(k = 1\) 一个 \(log\) 求出对应的 \(z\) ,再进行双指针,就可以做到 \(O(n)\) 了。

upd:发现自己的这个做法挺难写的,应该考虑计算的时候,也扩展到整个序列就好做了。

[省选联考 2021 A/B 卷] 卡牌游戏
#include <bits/stdc++.h>
using namespace std;
struct hehe{
long long a, num;
int op;
bool operator < (hehe b) const
{
return a < b.a;
}
}a[2000001];
bool used[2000001];
int main()
{
// freopen("card3.in", "r", stdin);
int n, k;
cin >> n >> k;
for(int i = 1; i <= n; i++)
{
scanf("%d", &a[i].a);
a[i].num = i;
a[i].op = 1;
}
for(int i = 1; i <= n; i++)
{
scanf("%d", &a[n + i].a);
a[i + n].num = i;
a[i].op = 1;
}
sort(a + 1, a + n * 2 + 1);
int l = 0, r = n * 2 + 1, now = 0;
while(!used[a[l + 1].num] && now + a[l + 1].op <= k) now += a[l + 1].op, used[a[l + 1].num] = 1, l++;
while(!used[a[r - 1].num] && now + a[r - 1].op <= k) now += a[r - 1].op, used[a[r - 1].num] = 1, r--;
long long ans = 1000000000000;
while(l >= 0)
{
ans = min(a[r - 1].a - a[l + 1].a, ans);
used[a[l].num] = 0;
now -= a[l].op;
l--;
while(!used[a[r - 1].num] && now + a[r - 1].op <= k) now += a[r - 1].op, used[a[r - 1].num] = 1, r--;
}
cout << ans << endl;
}

[省选联考 2021 A/B 卷] 卡牌游戏的更多相关文章

  1. 洛谷 P7516 - [省选联考 2021 A/B 卷] 图函数(Floyd)

    洛谷题面传送门 一道需要发现一些简单的性质的中档题(不过可能这道题放在省选 D1T3 中偏简单了?) u1s1 现在已经是 \(1\text{s}\)​ \(10^9\)​ 的时代了吗?落伍了落伍了/ ...

  2. [省选联考 2021 A/B 卷] 图函数

    考虑到一件事情首先\(u -> u\)是可行的. 所以其实对于\(f(u,G')\) 只要考虑\([1,u]\)的点. 那么考虑其条件等价于\(u -> i\) 和 \(i -> u ...

  3. [省选联考 2021 A/B 卷] 宝石

    大概是一眼看出来是这个给定序列在树上序列上按顺序跑最大匹配. 然后考虑维护向上和向下的链的值. 大概的做法是用倍增维护,考虑\(f_{u,i}\)是\(c_u\)在序列里的位置向后匹配\(2^i\)位 ...

  4. [省选联考 2021 A 卷] 矩阵游戏

    很巧妙的一个构造. 我是没有想到的. 自己的思维能力可能还是不足. 考虑先满足\(b\)对\(a\)的限制,把\(a\)的第一行和第一列设\(0\),推出这个\(a\). 接下来考虑对这个\(a\), ...

  5. 题解 P6622 [省选联考 2020 A/B 卷] 信号传递

    洛谷 P6622 [省选联考 2020 A/B 卷] 信号传递 题解 某次模拟赛的T2,考场上懒得想正解 (其实是不会QAQ), 打了个暴力就骗了\(30pts\) 就火速溜了,参考了一下某位强者的题 ...

  6. luoguP6622 [省选联考 2020 A/B 卷] 信号传递(状压dp)

    luoguP6622 [省选联考 2020 A/B 卷] 信号传递(状压dp) Luogu 题外话: 我可能是傻逼, 但不管我是不是傻逼, 我永远单挑出题人. 题解时间 看数据范围可以确定状压dp. ...

  7. luoguP6619 [省选联考 2020 A/B 卷]冰火战士(线段树,二分)

    luoguP6619 [省选联考 2020 A/B 卷]冰火战士(线段树,二分) Luogu 题外话1: LN四个人切D1T2却只有三个人切D1T1 很神必 我是傻逼. 题外话2: 1e6的数据直接i ...

  8. 洛谷 P7520 - [省选联考 2021 A 卷] 支配(支配树)

    洛谷题面传送门 真·支配树不 sb 的题. 首先题面已经疯狂暗示咱们建出支配树对吧,那咱就老老实实建呗.由于这题数据范围允许 \(n^2\)​ 算法通过,因此可以考虑 \(\mathcal O(n^2 ...

  9. 洛谷 P7515 - [省选联考 2021 A 卷] 矩阵游戏(差分约束)

    题面传送门 emmm--怎么评价这个题呢,赛后学完差分约束之后看题解感觉没那么 dl,可是现场为啥就因为种种原因想不到呢?显然是 wtcl( 先不考虑"非负"及" \(\ ...

随机推荐

  1. Kubernetes-Service介绍(三)-Ingress(含最新版安装踩坑实践)

    前言 本篇是Kubernetes第十篇,大家一定要把环境搭建起来,看是解决不了问题的,必须实战. Kubernetes系列文章: Kubernetes介绍 Kubernetes环境搭建 Kuberne ...

  2. OO第三次博客作业--第三单元总结

    一.JML 语言的理论基础及应用工具链 JML 是一种行为接口规格语言,提供了对方法和类型的规格定义手段.通过 JML 和其支持工具,不仅可以基于规格自动构造测试用例,并整合了 SMT Solver ...

  3. 用cmd命令行创建vue项目模板

    1.进入cmd命令行 输入存放项目的位置 2.通过vue create 项目名称 创建项目 3.选择Manually select features 4.通过空格选中第1.2.5.6.7.去掉8 4. ...

  4. 关于评论区empty。。。

    空荡荡的毫无人烟,博主希望路过的小哥哥/小姐姐(几率较小)留下些什么--

  5. Spark面试题(二)

    首发于我的个人博客:Spark面试题(二) 1.Spark有哪两种算子? Transformation(转化)算子和Action(执行)算子. 2.Spark有哪些聚合类的算子,我们应该尽量避免什么类 ...

  6. 穿点最多的直线 牛客网 程序员面试金典 C++

    穿点最多的直线 牛客网 程序员面试金典 C++ 题目描述 在二维平面上,有一些点,请找出经过点数最多的那条线. 给定一个点集vectorp和点集的大小n,没有两个点的横坐标相等的情况,请返回一个vec ...

  7. 深入了解Mybatis架构设计

    架构设计 我们可以把Mybatis的功能架构分为三层: API接口层:提供给外部使用的接口API,开发人员通过这些本地API来操纵数据库.接口层一接收到调用请求就会调用数据处理层来完成具体的数据处理. ...

  8. 使用vsftpd 搭建ftp服务

    ftp 基础服务器基础知识 ftp有三种登录方式.匿名登录(所有用户).本地用户.虚拟用户(guest). FTP工作模式 主动模式:服务端从20端口主动向客户端发起链接. 控制端口21:数据传输端口 ...

  9. docker 存储驱动(storage driver)知识总结

    http://www.sohu.com/a/101016494_116235 一,先看docker镜像是如何构建和存储. 下面是ubuntu:15.04的镜像分层.一共是4层,每一层都由一些只读并且描 ...

  10. 【Azure 存储服务】代码版 Azure Storage Blob 生成 SAS (Shared Access Signature: 共享访问签名)

    问题描述 在使用Azure存储服务,为了有效的保护Storage的Access Keys.可以使用另一种授权方式访问资源(Shared Access Signature: 共享访问签名), 它的好处可 ...