Pandas 简介

pandas 是 python 内基于 NumPy 的一种工具,主要目的是为了解决数据分析任务。Pandas 包含了大量库和一些标准的数据模型,提供了高效地操作大型数据集所需的工具。

学习 pandas 需要主要掌握的技能包括

  1. 汇总和计算描述统计,处理缺失数据 ,层次化索引;
  2. 清理、转换、合并、重塑、groupby 技术;
  3. 日期和时间数据类型及工具(日期处理方便地飞起);

本文参考主要介绍包括 Python科学计算:庖丁解牛之Pandas10 Minutes to pandas

数据类型

pandas 包含两个主要数据类型为 SeriesDataFrame,其中 Series 为一位向量,DataFrame 为二维数组。

import numpy as np
import pandas as pd s = pd.Series([1, 3, 5, np.nan, 6, 8])

利用 NumPy 数组可以构造 DataFrame 数组,如下所示

In [5]: dates = pd.date_range('20130101', periods=6)

In [6]: dates
Out[6]:
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
'2013-01-05', '2013-01-06'],
dtype='datetime64[ns]', freq='D') In [7]: df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD')) In [8]: df
Out[8]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
2013-01-06 -0.673690 0.113648 -1.478427 0.524988

数据可视化

为了对数据进行可视化,pandas包含了多种方法。基本可视化功能包括:观察头部与底部数据

In [13]: df.head()
Out[13]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401 In [14]: df.tail(3)
Out[14]:
A B C D
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-05 -0.424972 0.567020 0.276232 -1.087401
2013-01-06 -0.673690 0.113648 -1.478427 0.524988

显示数据索引:

In [15]: df.index
Out[15]:
DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
'2013-01-05', '2013-01-06'],
dtype='datetime64[ns]', freq='D') In [16]: df.columns
Out[16]: Index(['A', 'B', 'C', 'D'], dtype='object')

DataFrame.to_numpy() 可以将数据转化为 NumPy 数组类型。注意,这种方法在 DataFrame 内包含多种数组类型时可能会需要较长的转化时间,因为 NumPy 仅有一种数据类型。此外,DataFrame.to_numpy() 在输出时候不包括索引和标签列。

describe() 可以显示数据的快速统计摘要:

In [19]: df.describe()
Out[19]:
A B C D
count 6.000000 6.000000 6.000000 6.000000
mean 0.073711 -0.431125 -0.687758 -0.233103
std 0.843157 0.922818 0.779887 0.973118
min -0.861849 -2.104569 -1.509059 -1.135632
25% -0.611510 -0.600794 -1.368714 -1.076610
50% 0.022070 -0.228039 -0.767252 -0.386188
75% 0.658444 0.041933 -0.034326 0.461706
max 1.212112 0.567020 0.276232 1.071804

数据转置:

In [20]: df.T
Out[20]:
2013-01-01 2013-01-02 2013-01-03 2013-01-04 2013-01-05 2013-01-06
A 0.469112 1.212112 -0.861849 0.721555 -0.424972 -0.673690
B -0.282863 -0.173215 -2.104569 -0.706771 0.567020 0.113648
C -1.509059 0.119209 -0.494929 -1.039575 0.276232 -1.478427
D -1.135632 -1.044236 1.071804 0.271860 -1.087401 0.524988

按轴排序:

In [21]: df.sort_index(axis=1, ascending=False)
Out[21]:
D C B A
2013-01-01 -1.135632 -1.509059 -0.282863 0.469112
2013-01-02 -1.044236 0.119209 -0.173215 1.212112
2013-01-03 1.071804 -0.494929 -2.104569 -0.861849
2013-01-04 0.271860 -1.039575 -0.706771 0.721555
2013-01-05 -1.087401 0.276232 0.567020 -0.424972
2013-01-06 0.524988 -1.478427 0.113648 -0.673690

按值排序:

In [22]: df.sort_values(by='B')
Out[22]:
A B C D
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-06 -0.673690 0.113648 -1.478427 0.524988
2013-01-05 -0.424972 0.567020 0.276232 -1.087401

数据访问

为了进一步对DataFrame中数据进行操作,需要掌握数据的访问方法。在pandas中,提供了多种数据访问形式。

切片

在DataFrame中选取一个单列时,相当于构造一个Series对象

In [23]: df['A']
Out[23]:
2013-01-01 0.469112
2013-01-02 1.212112
2013-01-03 -0.861849
2013-01-04 0.721555
2013-01-05 -0.424972
2013-01-06 -0.673690
Freq: D, Name: A, dtype: float64

通过 [] 可以对数据部分进行选择,获得仅包含部分索引的切片数据

In [24]: df[0:3]
Out[24]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 In [25]: df['20130102':'20130104']
Out[25]:
A B C D
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
2013-01-04 0.721555 -0.706771 -1.039575 0.271860

通过标签切片

DataFrame中也可以通过数据的标签进行选取。

首先,DataFrame中数据标签类似于矩阵的列,但是标签除了数字形式,可以有更加直观的名称,如字符串等。下图展示了DataFrame中按照标签截取的主要方法

同时,也可以按照索引进行切片,在DataFrame中,索引类似矩阵的行号。在调用 loc 进行切片时,只要输入一个参数即可选取特定行

In [26]: df.loc[dates[0]]
Out[26]:
A 0.469112
B -0.282863
C -1.509059
D -1.135632
Name: 2013-01-01 00:00:00, dtype: float64

此时截取后数据为原始数据中第一行索引,类型为 Series 数据。

当然也可以在多轴上选择:

In [27]: df.loc[:, ['A', 'B']]
Out[27]:
A B
2013-01-01 0.469112 -0.282863
2013-01-02 1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04 0.721555 -0.706771
2013-01-05 -0.424972 0.567020
2013-01-06 -0.673690 0.113648

其中第一个标签 : 代表选取所有索引。也可以同时选取索引和标签列:

In [28]: df.loc['20130102':'20130104', ['A', 'B']]
Out[28]:
A B
2013-01-02 1.212112 -0.173215
2013-01-03 -0.861849 -2.104569
2013-01-04 0.721555 -0.706771

当确定数据的索引和标签时候,也可以用 at 命令快速访问,iat 为按照序号索引进行访问,二者对应如下午所示

In [31]: df.at[dates[0], 'A']
Out[31]: 0.4691122999071863

总结来说,在索引或切片 DataFrame时,可以用基于位置的 at 和 loc,二者功能是相似的。

通过编号选取

除了标签,也可以用整数编号对数据某行索引进行选择,与 loc 对应的有 iloc:

In [32]: df.iloc[3]
Out[32]:
A 0.721555
B -0.706771
C -1.039575
D 0.271860
Name: 2013-01-04 00:00:00, dtype: float64

通过两个序列编号方法则与 numpy 中数据读取类似

In [33]: df.iloc[3:5, 0:2]
Out[33]:
A B
2013-01-04 0.721555 -0.706771
2013-01-05 -0.424972 0.567020

也可以用列表形式选取索引

In [34]: df.iloc[[1, 2, 4], [0, 2]]
Out[34]:
A C
2013-01-02 1.212112 0.119209
2013-01-03 -0.861849 -0.494929
2013-01-05 -0.424972 0.276232

也可以用整数编号作为索引快速访问数组内容

In [38]: df.iat[1, 1]
Out[38]: -0.17321464905330858

布尔索引

在 DataFrame 中可以用单列值选择数据

In [39]: df[df.A > 0]
Out[39]:
A B C D
2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
2013-01-02 1.212112 -0.173215 0.119209 -1.044236
2013-01-04 0.721555 -0.706771 -1.039575 0.271860

也可以用满足布尔条件的DataFrame中选择值

In [40]: df[df > 0]
Out[40]:
A B C D
2013-01-01 0.469112 NaN NaN NaN
2013-01-02 1.212112 NaN 0.119209 NaN
2013-01-03 NaN NaN NaN 1.071804
2013-01-04 0.721555 NaN NaN 0.271860
2013-01-05 NaN 0.567020 0.276232 NaN
2013-01-06 NaN 0.113648 NaN 0.524988

赋值

当为DataFrame赋值新的列时,将按照索引自动对齐数据。

In [45]: s1 = pd.Series([1, 2, 3, 4, 5, 6], index=pd.date_range('20130102', periods=6))

In [46]: s1
Out[46]:
2013-01-02 1
2013-01-03 2
2013-01-04 3
2013-01-05 4
2013-01-06 5
2013-01-07 6
Freq: D, dtype: int64 In [47]: df['F'] = s1

按照上面数据读取方法,也可按照索引进行赋值:

In [48]: df.at[dates[0], 'A'] = 0
In [49]: df.iat[0, 1] = 0
In [50]: df.loc[:, 'D'] = np.array([5] * len(df))

缺失数据处理

重新索引时允许更改/删除/添加指定轴上索引,并返回数据的副本

In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])

In [56]: df1.loc[dates[0]:dates[1], 'E'] = 1

In [57]: df1
Out[57]:
A B C D F E
2013-01-01 0.000000 0.000000 -1.509059 5 NaN 1.0
2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0
2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 NaN
2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 NaN

删除缺少数据行可以用 dropna 方法计算

In [58]: df1.dropna(how='any')
Out[58]:
A B C D F E
2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0

也可用 fillna 填充丢失数据

In [59]: df1.fillna(value=5)
Out[59]:
A B C D F E
2013-01-01 0.000000 0.000000 -1.509059 5 5.0 1.0
2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0
2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 5.0
2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 5.0

数据操作

数据统计

可以用函数对各列或行数据进行统计

In [61]: df.mean()
Out[61]:
A -0.004474
B -0.383981
C -0.687758
D 5.000000
F 3.000000
dtype: float64
In [62]: df.mean(1)
Out[62]:
2013-01-01 0.872735
2013-01-02 1.431621
2013-01-03 0.707731
2013-01-04 1.395042
2013-01-05 1.883656
2013-01-06 1.592306
Freq: D, dtype: float64

函数计算

可以将函数应用于数据计算

In [66]: df.apply(np.cumsum)
Out[66]:
A B C D F
2013-01-01 0.000000 0.000000 -1.509059 5 NaN
2013-01-02 1.212112 -0.173215 -1.389850 10 1.0
2013-01-03 0.350263 -2.277784 -1.884779 15 3.0
2013-01-04 1.071818 -2.984555 -2.924354 20 6.0
2013-01-05 0.646846 -2.417535 -2.648122 25 10.0
2013-01-06 -0.026844 -2.303886 -4.126549 30 15.0 In [67]: df.apply(lambda x: x.max() - x.min())
Out[67]:
A 2.073961
B 2.671590
C 1.785291
D 0.000000
F 4.000000
dtype: float64

字符串方法

Series 在 str 属性中配备了字符串方法,可以对数据每个元素进行操作。

In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])

In [72]: s.str.lower()
Out[72]:
0 a
1 b
2 c
3 aaba
4 baca
5 NaN
6 caba
7 dog
8 cat
dtype: object

数据合并

数据结合

pandas 可将 Series 和 DataFrame 对象与各种用于索引和关系的功能组合在一起。

In [73]: df = pd.DataFrame(np.random.randn(10, 4))

In [74]: df
Out[74]:
0 1 2 3
0 -0.548702 1.467327 -1.015962 -0.483075
1 1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775
4 -0.919854 -0.042379 1.247642 -0.009920
5 0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -0.945867
7 -0.932132 1.956030 0.017587 -0.016692
8 -0.575247 0.254161 -1.143704 0.215897
9 1.193555 -0.077118 -0.408530 -0.862495 # break it into pieces
In [75]: pieces = [df[:3], df[3:7], df[7:]] In [76]: pd.concat(pieces)
Out[76]:
0 1 2 3
0 -0.548702 1.467327 -1.015962 -0.483075
1 1.637550 -1.217659 -0.291519 -1.745505
2 -0.263952 0.991460 -0.919069 0.266046
3 -0.709661 1.669052 1.037882 -1.705775
4 -0.919854 -0.042379 1.247642 -0.009920
5 0.290213 0.495767 0.362949 1.548106
6 -1.131345 -0.089329 0.337863 -0.945867
7 -0.932132 1.956030 0.017587 -0.016692
8 -0.575247 0.254161 -1.143704 0.215897
9 1.193555 -0.077118 -0.408530 -0.862495

插入

插入时可按照 SQL 样式进行插入

In [77]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})

In [78]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})

In [79]: left
Out[79]:
key lval
0 foo 1
1 foo 2 In [80]: right
Out[80]:
key rval
0 foo 4
1 foo 5 In [81]: pd.merge(left, right, on='key')
Out[81]:
key lval rval
0 foo 1 4
1 foo 1 5
2 foo 2 4
3 foo 2 5

另一个类似的示例为

In [82]: left = pd.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})

In [83]: right = pd.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})

In [84]: left
Out[84]:
key lval
0 foo 1
1 bar 2 In [85]: right
Out[85]:
key rval
0 foo 4
1 bar 5 In [86]: pd.merge(left, right, on='key')
Out[86]:
key lval rval
0 foo 1 4
1 bar 2 5

增加数据

append 命令可以增加数据

In [87]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A', 'B', 'C', 'D'])

In [88]: df
Out[88]:
A B C D
0 1.346061 1.511763 1.627081 -0.990582
1 -0.441652 1.211526 0.268520 0.024580
2 -1.577585 0.396823 -0.105381 -0.532532
3 1.453749 1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346 0.339969 -0.693205
5 -0.339355 0.593616 0.884345 1.591431
6 0.141809 0.220390 0.435589 0.192451
7 -0.096701 0.803351 1.715071 -0.708758 In [89]: s = df.iloc[3] In [90]: df.append(s, ignore_index=True)
Out[90]:
A B C D
0 1.346061 1.511763 1.627081 -0.990582
1 -0.441652 1.211526 0.268520 0.024580
2 -1.577585 0.396823 -0.105381 -0.532532
3 1.453749 1.208843 -0.080952 -0.264610
4 -0.727965 -0.589346 0.339969 -0.693205
5 -0.339355 0.593616 0.884345 1.591431
6 0.141809 0.220390 0.435589 0.192451
7 -0.096701 0.803351 1.715071 -0.708758
8 1.453749 1.208843 -0.080952 -0.264610

数据分组

数据分组可将 DataFrame 中功能独立地应用于每个组

In [91]: df = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
....: 'foo', 'bar', 'foo', 'foo'],
....: 'B': ['one', 'one', 'two', 'three',
....: 'two', 'two', 'one', 'three'],
....: 'C': np.random.randn(8),
....: 'D': np.random.randn(8)})
....: In [92]: df
Out[92]:
A B C D
0 foo one -1.202872 -0.055224
1 bar one -1.814470 2.395985
2 foo two 1.018601 1.552825
3 bar three -0.595447 0.166599
4 foo two 1.395433 0.047609
5 bar two -0.392670 -0.136473
6 foo one 0.007207 -0.561757
7 foo three 1.928123 -1.623033
In [93]: df.groupby('A').sum()
Out[93]:
C D
A
bar -2.802588 2.42611
foo 3.146492 -0.63958

数据重构

首先对 DataFram 数据表进行初始化

In [105]: df = pd.DataFrame({'A': ['one', 'one', 'two', 'three'] * 3,
.....: 'B': ['A', 'B', 'C'] * 4,
.....: 'C': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
.....: 'D': np.random.randn(12),
.....: 'E': np.random.randn(12)})
.....: In [106]: df
Out[106]:
A B C D E
0 one A foo 1.418757 -0.179666
1 one B foo -1.879024 1.291836
2 two C foo 0.536826 -0.009614
3 three A bar 1.006160 0.392149
4 one B bar -0.029716 0.264599
5 one C bar -1.146178 -0.057409
6 two A foo 0.100900 -1.425638
7 three B foo -1.035018 1.024098
8 one C foo 0.314665 -0.106062
9 one A bar -0.773723 1.824375
10 two B bar -1.170653 0.595974
11 three C bar 0.648740 1.167115

数据透视表可通过 pivot_table 方法生成数据透视表,其中 values 为表值,index 为透视表索引,columns 为数据列名。

In [107]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
Out[107]:
C bar foo
A B
one A -0.773723 1.418757
B -0.029716 -1.879024
C -1.146178 0.314665
three A 1.006160 NaN
B NaN -1.035018
C 0.648740 NaN
two A NaN 0.100900
B -1.170653 NaN
C NaN 0.536826

时间序列

数据类别

数据绘图

当使用 plot 函数时,可以很方便地绘制带有标签的所有列,并在图例中显示对应的标签名:

In [135]: ts = pd.Series(np.random.randn(1000),
.....: index=pd.date_range('1/1/2000', periods=1000))
.....: In [136]: ts = ts.cumsum() In [137]: ts.plot()
Out[137]: <matplotlib.axes._subplots.AxesSubplot at 0x7f24a8b314d0>

数据IO

pandas 可从多种类型文件中获取数据,例如可以写入或读取csv文件

In [143]: df.to_csv('foo.csv')

In [144]: pd.read_csv('foo.csv')
Out[144]:
Unnamed: 0 A B C D
0 2000-01-01 0.266457 -0.399641 -0.219582 1.186860
1 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
2 2000-01-03 -1.734933 0.530468 2.060811 -0.515536
3 2000-01-04 -1.555121 1.452620 0.239859 -1.156896
4 2000-01-05 0.578117 0.511371 0.103552 -2.428202
.. ... ... ... ... ...
995 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740
996 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439
997 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593
998 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
999 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368 [1000 rows x 5 columns]

写入或读取 HDF5 文件

In [145]: df.to_hdf('foo.h5', 'df')

In [146]: pd.read_hdf('foo.h5', 'df')
Out[146]:
A B C D
2000-01-01 0.266457 -0.399641 -0.219582 1.186860
2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
2000-01-03 -1.734933 0.530468 2.060811 -0.515536
2000-01-04 -1.555121 1.452620 0.239859 -1.156896
2000-01-05 0.578117 0.511371 0.103552 -2.428202
... ... ... ... ...
2002-09-22 -8.985362 -8.485624 -4.669462 31.367740
2002-09-23 -9.558560 -8.781216 -4.499815 30.518439
2002-09-24 -9.902058 -9.340490 -4.386639 30.105593
2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
2002-09-26 -11.856774 -10.671012 -3.216025 29.369368 [1000 rows x 4 columns]

写入或读取 excel 文件

In [147]: df.to_excel('foo.xlsx', sheet_name='Sheet1')

In [148]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])
Out[148]:
Unnamed: 0 A B C D
0 2000-01-01 0.266457 -0.399641 -0.219582 1.186860
1 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
2 2000-01-03 -1.734933 0.530468 2.060811 -0.515536
3 2000-01-04 -1.555121 1.452620 0.239859 -1.156896
4 2000-01-05 0.578117 0.511371 0.103552 -2.428202
.. ... ... ... ... ...
995 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740
996 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439
997 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593
998 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
999 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368 [1000 rows x 5 columns]

Pandas 简介的更多相关文章

  1. python之pandas简介

    一. Pandas简介 1.Python Data Analysis Library 或 pandas 是基于NumPy 的一种工具,该工具是为了解决数据分析任务而创建的.Pandas 纳入了大量库和 ...

  2. python库pandas简介

    pandas是基于numpy的数据分析模块,提供了大量标准模型和高效操作大型数据集所需要的工具. pandas主要提供了3种数据结构:1.Series,带标签的一维数组:2.DataFrame,带标签 ...

  3. Python中的结构化数据分析利器-Pandas简介

    Pandas是python的一个数据分析包,最初由AQR Capital Management于2008年4月开发,并于2009年底开源出来,目前由专注于Python数据包开发的PyData开发tea ...

  4. 数据分析工具pandas简介

    什么是Pandas? Pandas的名称来自于面板数据(panel data)和Python数据分析(data analysis). Pandas是一个强大的分析结构化数据的工具集,基于NumPy构建 ...

  5. Python数据分析与展示[第三周](pandas简介与数据创建)

    第三周的课程pandas 分析数据 http://pandas.pydata.org import pandas as pd 常与numpy matplotlib 一块定义 d=pd.Series(r ...

  6. 数据分析 Pandas 简介和它的的数据结构

    本文主要讲Pandas 的Series和DataFrame 的相关属性和操作 1.Series的相关属性和操作# --Series是一种类似于一维数组的对象,只能存放一维数组!由以下两部分组成:# v ...

  7. 【划重点】Python pandas简介

    一.pandas获取Excel表单的两种方式 import pandas as pd df1 = pd.DataFrame(pd.read_excel(r'C:\Users\ASUS\Desktop\ ...

  8. pandas简介

  9. Python数据分析Pandas库方法简介

    Pandas 入门 Pandas简介 背景:pandas是一个Python包,提供快速,灵活和富有表现力的数据结构,旨在使“关系”或“标记”数据的使用既简单又直观.它旨在成为在Python中进行实际, ...

随机推荐

  1. OO第三单元JML总结

    目录 目录一.JML语言的理论基础二.应用工具链三.部署SMT Solver四.部署JMLUnitNG/JMLUnit五.三次作业分析第一次作业第二次作业第三次作业六.总结与心得体会 一.JML语言的 ...

  2. 热身训练1 ping ping ping

    点此进入 题意: 一棵树,n+1 个节点,以0号节点为根,给出端点(a,b),节点a到节点b的路径上,至少有一个点是"坏掉的",求"坏掉的点"最少 分析: St ...

  3. 震惊,本Orzer下阶段直接怒送四个笑脸

    众所周知,在hzoi帝国中,Wzx是最菜的.那么究竟有多菜呢?下面就和小编一起来看看吧. 近日,hzoi最菜的wzx在第四阶段竟然怒送4个笑脸,同机房神犇直呼wzx太菜了! 以上就是wzx第四阶段怒送 ...

  4. 疯狂Java基础Day1

    --每过一遍基础,都是一次提升! 太多遗忘了,慢慢补... 推一个Java学习教程--->b站搜:狂神说Java系列(排序完毕) 推荐原因:讲的不错,会涉及到底层,也会讲讲面试. 一.注释 主要 ...

  5. 算法:N-皇后问题

    一.八皇后问题 八皇后问题是一个以国际象棋为背景的问题:如何能够在8 × 8 的国际象棋棋盘上放置八个皇后(Queen),使得任何一个皇后都无法直接吃掉其他的皇后.为了达到此目的,任两个皇后都不能处于 ...

  6. linux下使用shell命令通过wpa_cli控制wpa_supplicant连接wifi

    最近在调试wifi,已经把wpa_supplicant 工具编译打包好了,为了测试wif驱动及wifi模块是否ok,需要用shell命令临时启动wifi服务连接wifi热点测试. 首先板子启动用ifc ...

  7. 『动善时』JMeter基础 — 56、JMeter使用命令行模式生成HTML测试报告

    目录 1.自动生成HTML图形化报告 2.使用已有的测试结果文件生成HTML报告 3.HTML图形化报告内容详解 (1)Dashboard页面:(重点查看) (2)Charts页面:(辅助分析) 4. ...

  8. Win10自动备份oracle数据库

    1.环境 操作系统:win10 数据库: 2.创建backup.bat文件 [ @echo offset name=%date:~0,4%%date:~5,2%%date:~8,2%set backu ...

  9. robot_framewok自动化测试--(2)创建第一个项目

    创建第一个robot_framewok项目 通过 RIDE 去学习和使用 Robot Framework 框架,对于初学者来说大大的降低了学习难度.所以后面对 Robot Framework 框架都将 ...

  10. 开源项目|Go 开发的一款分布式唯一 ID 生成系统

    原文连接: 开源项目|Go 开发的一款分布式唯一 ID 生成系统 今天跟大家介绍一个开源项目:id-maker,主要功能是用来在分布式环境下生成唯一 ID.上周停更了一周,也是用来开发和测试这个项目的 ...