Codeforces 题目传送门 & 洛谷题目传送门

我怕不是个 nt……一开始忽略了”询问独立“这个条件……然后就一直在想有什么办法维护全局 LIS……心态爆炸

首先离散化。预处理出以每个点为结尾的 LIS 长度 \(f_i\),以及以每个点为开头的 LIS 长度 \(g_i\)。

不难发现每次只修改一个元素,故每次询问的答案只可能是原序列 LIS 的长度 \(mx\pm 1\)。

我们不妨来探究什么情况下询问的答案为 \(mx+1\),什么情况下询问的答案为 \(mx-1\)。

\(+1\) 的情况比较容易,只可能是存在一个通过 \(a_i\) 的长度为 \(mx+1\) 的上升序列,如果我们记 \(f'_i\) 为将 \(a_i\) 位置上的值换成 \(b_i\) 后,以 \(a_i\) 结尾的 LIS 的长度,\(g'_i\) 为将 \(a_i\) 位置上的值换成 \(b_i\) 后,以 \(a_i\) 开头的 LIS 的长度,那么新序列中经过 \(a_i\) 的上升序列的长度最大值即为 \(f'_i+g'_i-1\),故若 \(f'_i+g'_i-1=mx+1\),则新的 LIS 长度为 \(mx+1\)。

\(-1\) 的情况相对来说比较困难,新序列 LIS 的长度为 \(mx-1\) 需要两个条件,一是经过 \(a_i\) 的 LIS 长度 \(<mx\),二是所有长度为 \(mx\) 的上升子序列都经过 \(a_i\)。条件一比较容易检验,还是记 \(f'_i\) 为将 \(a_i\) 位置上的值换成 \(b_i\) 后,以 \(a_i\) 结尾的 LIS 的长度,那么经过 \(a_i\) 的 LIS 长度就是 \(f'_i+g'_i-1\)。比较麻烦的是条件二,一种可能的处理方式是在求 \(f_i\) 的同时求出 \(ed_i\) 表示有多少个长度为 \(f_i\) 的上升子序列以 \(i\) 结尾,\(st_i\) 表示有多少个长度为 \(g_i\) 的上升子序列以 \(i\) 开头,那么总共有 \(\dfrac{1}{mx}\sum\limits_{i}st_ied_i[f_i+g_i-1=mx]\) 个长度为 \(mx\) 的 LIS。检验是否所有长度为 \(mx\) 的上升子序列都经过 \(a_i\) 需要满足两个条件,一是 \(f_{a_i}+g_{a_i}-1=mx\),二是经过 \(a_i\) 的 LIS 的个数等于长度为 \(mx\) 的 LIS 的总个数,即 \(st_ied_i=\dfrac{1}{mx}\sum\limits_{i}st_ied_i[f_i+g_i-1=mx]\),由于 LIS 的个数很多,故这里的 \(f_i,g_i\) 需模上一个大质数,如 \(998244353\) 等,这个实现起来略有些困难,就不展开讲解了(估计 CF 上此题 hashing 的 tag 就是留给这个解法的罢)。

这里给出一个较为简便的做法,首先 \(f_{a_i}+g_{a_i}-1=mx\) 是必要条件,如果 \(f_{a_i}+g_{a_i}-1\neq mx\) 那肯定不满足条件,其次关于 LIS 有一个性质,那就是若 \(f_i+g_i-1=mx\),对于所有经过 \(i\) 的 LIS,该 LIS 中第 \(f_i\) 大的元素一定是 \(i\)。考虑反证法,设 \(i\) 是这样的 LIS 中第 \(j\) 个元素,若 \(j<f_i\),那么在 \(i\) 后面的元素有 \(mx-j>g_i\) 个,而根据 \(g_i\) 的定义知以 \(i\) 开头的 LIS 长度最大为 \(g_i\),矛盾,\(j>f_i\) 的情况也同理。考虑对于不经过 \(i\) 的 LIS,这样的 LIS 中第 \(f_i\) 大的元素是什么,根据之前的分析知假设第 \(f_i\) 大的元素是 \(j\),那么一定有 \(f_j=f_i\)。也就是说如果 \(f_j=f_{a_i},j\neq a_i\) 的 \(j\) 存在,那 \(a_i\) 就不符合题意。故只需开一个桶 \(c_i\) 表示有多少 \(f_j=i\) 的 \(j\) 并检验 \(c_{f_{a_i}}=1\) 即可。

至于怎么求 \(f_i,g_i\)……就按照套路把询问挂在 \(a_i\) 处,然后按照树状数组求 LIS 的套路扫描一遍即可。时间复杂度 \(n\log n\)。

那问题就来了,如果这题询问不独立怎么做呢?

#include <bits/stdc++.h>
using namespace std;
#define fi first
#define se second
#define fill0(a) memset(a,0,sizeof(a))
#define fill1(a) memset(a,-1,sizeof(a))
#define fillbig(a) memset(a,63,sizeof(a))
#define pb push_back
#define ppb pop_back
#define mp make_pair
template<typename T1,typename T2> void chkmin(T1 &x,T2 y){if(x>y) x=y;}
template<typename T1,typename T2> void chkmax(T1 &x,T2 y){if(x<y) x=y;}
typedef pair<int,int> pii;
typedef long long ll;
typedef unsigned int u32;
typedef unsigned long long u64;
namespace fastio{
#define FILE_SIZE 1<<23
char rbuf[FILE_SIZE],*p1=rbuf,*p2=rbuf,wbuf[FILE_SIZE],*p3=wbuf;
inline char getc(){return p1==p2&&(p2=(p1=rbuf)+fread(rbuf,1,FILE_SIZE,stdin),p1==p2)?-1:*p1++;}
inline void putc(char x){(*p3++=x);}
template<typename T> void read(T &x){
x=0;char c=getchar();T neg=0;
while(!isdigit(c)) neg|=!(c^'-'),c=getchar();
while(isdigit(c)) x=(x<<3)+(x<<1)+(c^48),c=getchar();
if(neg) x=(~x)+1;
}
template<typename T> void recursive_print(T x){if(!x) return;recursive_print(x/10);putc(x%10^48);}
template<typename T> void print(T x){if(!x) putc('0');if(x<0) putc('-'),x=~x+1;recursive_print(x);}
void print_final(){fwrite(wbuf,1,p3-wbuf,stdout);}
}
const int MAXN=4e5;
int n,qu,key[MAXN*2+5],uni[MAXN*2+5],num=0,cnt=0;
int a[MAXN+5],x[MAXN+5],y[MAXN+5];
int v[MAXN+5],nxt[MAXN+5],hd[MAXN+5],item_n=0;
void ins(int p,int q){v[++item_n]=q;nxt[item_n]=hd[p];hd[p]=item_n;}
int getnum(int x){
int l=1,r=num;
while(l<=r){
int mid=(l+r)>>1;
if(uni[mid]==x) return mid;
if(uni[mid]<x) l=mid+1;
else r=mid-1;
}
}
int f[MAXN+5],g[MAXN+5],qf[MAXN+5],qg[MAXN+5],c[MAXN+5];
int t[MAXN*2+5];
void add(int x,int v){for(int i=x;i<=num;i+=(i&(-i))) chkmax(t[i],v);}
int query(int x){int ret=0;for(int i=x;i;i&=(i-1)) chkmax(ret,t[i]);return ret;}
int main(){
scanf("%d%d",&n,&qu);
for(int i=1;i<=n;i++) scanf("%d",&a[i]),key[++cnt]=a[i];
for(int i=1;i<=qu;i++) scanf("%d%d",&x[i],&y[i]),ins(x[i],i),key[++cnt]=y[i];
sort(key+1,key+cnt+1);
for(int i=1;i<=cnt;i++) if(key[i]!=key[i-1]) uni[++num]=key[i];
for(int i=1;i<=n;i++) a[i]=getnum(a[i]);
for(int i=1;i<=qu;i++) y[i]=getnum(y[i]);
for(int i=1;i<=n;i++) f[i]=query(a[i]-1)+1,add(a[i],f[i]);
memset(t,0,sizeof(t));
for(int i=n;i;i--) g[i]=query(num-a[i])+1,add(num-a[i]+1,g[i]);
memset(t,0,sizeof(t));
for(int i=1;i<=n;i++){
for(int e=hd[i];e;e=nxt[e]){
int id=v[e];qf[id]=query(y[id]-1)+1;
} add(a[i],f[i]);
}
memset(t,0,sizeof(t));
for(int i=n;i;i--){
for(int e=hd[i];e;e=nxt[e]){
int id=v[e];qg[id]=query(num-y[id])+1;
} add(num-a[i]+1,g[i]);
}
int mx=0;
for(int i=1;i<=n;i++) chkmax(mx,f[i]+g[i]-1);
for(int i=1;i<=n;i++) if(f[i]+g[i]-1==mx) c[f[i]]++;
for(int i=1;i<=qu;i++){
if(qf[i]+qg[i]-1>mx) printf("%d\n",qf[i]+qg[i]-1);
else if(qf[i]+qg[i]-1<mx&&f[x[i]]+g[x[i]]-1==mx&&c[f[x[i]]]==1) printf("%d\n",mx-1);
else printf("%d\n",mx);
}
return 0;
}

Codeforces 650D - Zip-line(树状数组)的更多相关文章

  1. [Codeforces 1208D]Restore Permutation (树状数组)

    [Codeforces 1208D]Restore Permutation (树状数组) 题面 有一个长度为n的排列a.对于每个元素i,\(s_i\)表示\(\sum_{j=1,a_j<a_i} ...

  2. Codeforces 830B - Cards Sorting 树状数组

    B. Cards Sorting time limit per test 1 second memory limit per test 256 megabytes input standard inp ...

  3. codeforces 589G G. Hiring(树状数组+二分)

    题目链接: G. Hiring time limit per test 4 seconds memory limit per test 512 megabytes input standard inp ...

  4. CodeForces–830B--模拟,树状数组||线段树

    B. Cards Sorting time limit per test 1 second memory limit per test 256 megabytes input standard inp ...

  5. Codeforces 1139F Dish Shopping 树状数组套平衡树 || 平衡树

    Dish Shopping 将每个物品拆成p 和 s 再加上人排序. 然后问题就变成了, 对于一个线段(L - R), 问有多少个(li, ri)满足  L >= li && R ...

  6. CodeForces 522D Closest Equals 树状数组

    题意: 给出一个序列\(A\),有若干询问. 每次询问某个区间中值相等且距离最短的两个数,输出该距离,没有则输出-1. 分析: 令\(pre_i = max\{j| A_j = A_i, j < ...

  7. Codeforces 960F Pathwalks ( LIS && 树状数组 )

    题意 : 给出若干个边,每条边按照给出的顺序编号,问你找到一条最长的边权以及边的编号同时严格升序的一条路径,要使得这条路径包含的边尽可能多,最后输出边的条数 分析 :  这题和 LIS 很相似,不同的 ...

  8. CodeForces - 597C Subsequences (树状数组+动态规划)

    For the given sequence with n different elements find the number of increasing subsequences with k + ...

  9. codeforces Gym100589H Count Subarrays 树状数组/线段树+离散化

    题意:给你一个数组,问你有多少子数组中的逆元数不小于K个,N<105 还在研究中

随机推荐

  1. 在Vue&Element前端项目中,对于字典列表的显示处理

    在很多项目开发中,我们为了使用方便,一般都会封装一些自定义组件来简化界面的显示处理,例如参照字典的下拉列表显示,是我们项目中经常用到的功能之一,本篇随笔介绍在Vue&Element前端项目中如 ...

  2. Java---String和StringBuffer类

    Java---String和StringBuffer类 Java String 类 字符串在Java中属于对象,Java提供String类来创建和操作字符串. 创建字符串 创建字符串常用的方法如下: ...

  3. props&attrs provide inject

    defineComponent({ props: {// 1 } setup (props, {attrs, emit}) { } }) 一,组件传值: 父传子: 1.如果没有在定义的props中声明 ...

  4. Scrum Meeting 14

    第14次例会报告 日期:2021年06月07日 会议主要内容概述: 汇报了已完成的工作,明确了下一步目标,正在努力赶进度. 一.进度情况 我们采用日报的形式记录每个人的具体进度,链接Home · Wi ...

  5. UltraSoft - Beta - Scrum Meeting 1

    Date: May 17th, 2020. Scrum 情况汇报 进度情况 组员 负责 今日进度 q2l PM.后端 维护Beta阶段文档 Liuzh 前端 增加删除操作按钮 Kkkk 前端 查询增加 ...

  6. 面试不再慌,终于有人把TCP讲明白了。。。

    前言 TCP(Transmission Control Protocol,传输控制协议) 是计算机网络的的重要组成部分,也是网络编程的重要内容,还有我们平时接触最多的 HTTP 也是基于 TCP 实现 ...

  7. Noip模拟40 2021.8.15

    T1 送花 按照题解意思说是扫描线题,但我觉得像一个线段树优化$dp$ 主要思想一样,就是暴力枚举右端点,同时维护左端点的最值, 考虑两种情况, 如果左端点在$r$扫到的数$i$上一次出现的位置之前, ...

  8. 在c中使用正则表达式

    今天学习编译原理的时候,用c写一个简易的文法识别器实验遇到了一个问题:要用正则表达式去识别正则文法里面的A->ω,A->Bω, 其中ω属于T的正闭包,也就是说我们对正则文法的产生式进行抽象 ...

  9. hdu 1159 Common Subsequence(最长公共子序列,DP)

    题意: 两个字符串,判断最长公共子序列的长度. 思路: 直接看代码,,注意边界处理 代码: char s1[505], s2[505]; int dp[505][505]; int main(){ w ...

  10. 并发编程从零开始(十四)-Executors工具类

    并发编程从零开始(十四)-Executors工具类 12 Executors工具类 concurrent包提供了Executors工具类,利用它可以创建各种不同类型的线程池 12.1 四种对比 单线程 ...