系统发育树邻接法(NJ)和非加权组平均法(UPGMA)之比较
1.原理的区别
主要区别在于,非加权组平均法(UPGMA)是基于平均链接方法的聚集层次聚类方法,而邻接法(NJ)是基于最小演化准则的迭代聚类法。
UPGMA的假定条件是:在进化过程中,每一世系发生趋异的次数相同,即核苷酸或氨基酸的替换速率是均等且恒定的。
UPGMA生成有根树,而NJ生成无根树。由于UPGMA方法假定演化速率相等,因此分支末端相等,NJ方法允许不相等的演化速率,因此分支长度与变化量成正比。
UPGMA示意图:
NJ示意图:
UPGMA是一种简单,快速但不可靠的方法,而NJ方法是一种相对较快的方法,与UPGMA方法相比,效果更好。 当然也要看具体目的。
二者区别总结:
2.实操比较
我用Plink处理得到样本的亲缘关系矩阵(IBD)文件,示例如下:
library(ape) #用于NJ法
df <- read.delim("prefix.ibdM0", sep = "\t",header=TRUE, row.names=1)
df[1:5,1:5]
df <- data.matrix(df)
str(df)
UPGMA
如果直接用亲缘关系矩阵,hclust函数(stats包)识别不了。
#hclust对象需要转化为距离
tr3 <- as.phylo(stats::hclust(df,method="average")) #UPGMA
str(tr3)
plot(tr3, cex=1)
使用dist计算距离:
tr4 <- as.phylo(hclust(dist(df),method="average"))
str(tr4)
plot(tr4, cex=1)
NJ法
而在NJ法中,有没有dist都可以。但有没有转化距离二者还是有一些差别的,建议还是转化后使用。
tr1 <- bionj(df) #或nj(df)
str(tr1)
plot(tr1, cex=1)
tr2 <- bionj(dist(df))
str(tr2)
plot(tr2, cex=1)
没用dist:
用dist:
保存树文件
树文件在R中是一个列表,包括节点和边等信息:
保存树文件:
write.tree(tr1,"test.nwk")
NJ和UPGMA生成的树都可这样保存,保存后就可导入其他软件美化了。
更深理解
如果想要更进一步的了解,建议看看这个教程:
Module 24: An Intro to Phylogenetic Tree Construction in R
包含了极大似然法ML等。
Ref: https://pediaa.com/difference-between-upgma-and-neighbor-joining-tree/
系统发育树邻接法(NJ)和非加权组平均法(UPGMA)之比较的更多相关文章
- B+树,B树,聚集索引,非聚集索引
简介: B+树中只有叶子节点会带有指向记录的指针,而B树则所有节点都带有 B+树索引可以分为聚集索引和非聚集索引 mysql使用B+树,其中Myisam是非聚集索引,innoDB是聚集索引 聚簇索引索 ...
- MEGA软件——系统发育树构建方法(图文讲解) 转载
转载:http://www.plob.org/2012/12/02/4927.html 一.序列文本的准备 构树之前先将目标基因序列都分别保存为txt文本文件中(或者把所有序列保存在同一个txt文本中 ...
- PHP正则中的捕获组与非捕获组
今天遇到一个正则匹配的问题,忽然翻到有捕获组的概念,手册上也是一略而过,百度时无意翻到C#和Java中有对正则捕获组的特殊用法,搜索关键词有PHP时竟然没有相关内容,自己试了一下,发现在PHP中也是可 ...
- php 正则表达式捕获组与非捕获组
熟练掌握正则表达式是每个程序员的基础要求,对于每个初学者来说会被正则表达式一连串字符弄得头晕眼花.博主便会如此,一直对正则表达式有种莫名的恐惧.近来看到另一位博友写的 <php正则表达式> ...
- java正则表达式 非捕获组详解
这几天看了下正则表达式,对非捕获组(non-capturing)进行下总结.主要总结 1个 + 2组 一共5个.(?:X) (?=X) (?<=X) (?!X) (?<!X) 一.先从( ...
- JAVA正则表达式-捕获组与非捕获组
Java捕获组与非捕获组的问题 先看例子: import java.util.regex.Matcher; import java.util.regex.Pattern; public class P ...
- java 捕获组与非捕获组
非捕获组:格式:(?:xxxx), 如:(?:aaa)\\w+(bbb)\\1,\\1 代表重复捕获的第一组即是(bbb) public static void main(String[] args) ...
- zstu.4191: 无向图找环(dfs树 + 邻接表)
4191: 无向图找环 Time Limit: 5 Sec Memory Limit: 128 MB Submit: 117 Solved: 34 Description 给你一副无向图,每条边有 ...
- Stern-Brocot树 及 法里级数分析
Stern-Brocot树产生了所有分子分母互素的分数 从初始0/1 1/0 -> m/n m'/n'出发,不断往中间添加 (m+m')/(n+n')容易推得 n * m' - m * n' = ...
随机推荐
- ShardingJdbc基于Zookeeper实现分布式治理
随着数据规模的不断膨胀,使用多节点集群的分布式方式逐渐成为趋势.在这种情况下,如何高效.自动化管理集群节点,实现不同节点的协同工作,配置一致性,状态一致性,高可用性,可观测性等,就成为一个重要的挑战. ...
- 第32篇-解析interfacevirtual字节码指令
在前面介绍invokevirtual指令时,如果判断出ConstantPoolCacheEntry中的_indices字段的_f2属性的值为空,则认为调用的目标方法没有连接,也就是没有向Constan ...
- qgis cookbook-QgsMapRendererJob学习
学习到渲染(QgsMapRendererJob),按照教程所讲总是输出不了图像,看了一下qgis的测试源码,发现少了一句话,加上后就可以输出了! from qgis.core import * fro ...
- [CSP-S2021] 回文
链接: P7915 题意: 给出一个长度为 \(2n\) 的序列 \(a\),其中 \(1\sim n\) 每个数出现了 2 次.有 L,R 两种操作分别是将 \(a\) 的开头或末尾元素加入到初始为 ...
- linux中的strip命令简介
转载:https://blog.csdn.net/qq_37858386/article/details/78559490 strip:去除,剥去 一.下面是man strip获得到的信息,简 ...
- cf Make It Nondeterministic (简单贪心)
有N个人.每个人都有两个名字. 给出这N个人的一个排列.p[1]...p[N]. 现在让每个人挑自己丙个名字中的一个名字.问是否存在一种方案,使得挑出来的N个名字按字典序排完以后正好是p[1]...p ...
- js this指向汇总
this指向 普通函数 window 定时器函数 window 事件函数 事件源 箭头函数 父function中的this,没有就是window 对象函数 对象本身 构造函数 实例化 ...
- SpringCloud微服务实战——搭建企业级开发框架(十三):OpenFeign+Ribbon实现高可用重试机制
Spring Cloud OpenFeign 默认是使用Ribbon实现负载均衡和重试机制的,虽然Feign有自己的重试机制,但该功能在Spring Cloud OpenFeign基本用不上,除非 ...
- Python小练习之验证“哥德巴赫猜想”
设计内容:任何一个大于2的偶数都可以分解为两个素数之和,这就是著名的哥达巴赫猜想. 设计要求:要求输入一个大于2的偶数,程序运行后,输出两个素数,其和正好等于该偶数. 1. 实验代码(知道是你们 ...
- Go websocket EOF bug
背景 使用的 golang.org/x/net/websocket 包,前端一发来消息就报错 if err = websocket.Message.Receive(ws, &msg); err ...