传送门

各种骗分无果,特殊性质还手残写挂了……

首先完全图上直接输出边权 \(\times (n-2)\) 就行了,然而我脑残乘的 \(n-1\)

看数据范围肯定是状压,但是压边肯定炸了,考虑压点

因为1到n路径唯一,最终的图可以看作一条链上挂着数个连通块

根据题解,我们试着从这个方向下手

那这里状压的时候我们既要考虑这条链,又要考虑连通块

发现只有链上的最后一个元素有用,所以令 \(dp[s][k]\) 为已选的点集为 \(s\) ,链的末端为k时的最大边权和

考虑转移,发现我们可以向链的末端挂上一个任意大小的联通块

所以直接暴力 \(O(n^23^n)\) 枚举转移,发现T了

于是大力卡常,预处理优化到 \(O(\frac{n^2}{4}3^n)\) ,发现过了,然后就没有了

其实还可以优化,考虑把「挂任意大小的联通块」拆成「挂一个元素」和「在当前链的末端挂一个连通块,但不改变链的末端元素」两种情况

然后就可以分开转移,可以康康战神代码

Code:

#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f
#define N 100010
#define ll long long
#define reg register int
//#define int long long char buf[1<<21], *p1=buf, *p2=buf;
#define getchar() (p1==p2&&(p2=(p1=buf)+fread(buf, 1, 1<<21, stdin)), p1==p2?EOF:*p1++)
inline int read() {
int ans=0, f=1; char c=getchar();
while (!isdigit(c)) {if (c=='-') f=-f; c=getchar();}
while (isdigit(c)) {ans=(ans<<3)+(ans<<1)+(c^48); c=getchar();}
return ans*f;
} int n, m;
ll sum; namespace force{
ll ans;
int head[N], size;
bool vis[N], use[N], fa[N];
struct edge{int from, to, next, val;}e[N<<1];
inline void add(int s, int t, int w) {edge* k=&e[++size]; k->from=s; k->to=t; k->val=w; k->next=head[s]; head[s]=size;}
inline bool operator < (edge a, edge b) {return a.val<b.val;}
inline int find(int p) {return fa[p]==p?p:fa[p]=find(fa[p]);}
bool dfs(int u) {
vis[u]=1;
bool yes=0;
for (int i=head[u],v; i; i=e[i].next) {
v = e[i].to;
if (!vis[v]) {
if (dfs(v)) yes=1;
}
}
if (yes) {
use[u]=1;
for (int i=head[u]; i; i=e[i].next)
use[e[i].to]=1;
}
return (u==n)||yes;
}
void kruskal() {
sort(e+1, e+size+1);
for (int i=1,f1,f2; i<=size; ++i) {
f1=find(e[i].from), f2=find(e[i].to);
if (f1!=f2) {
ans+=e[i].val;
}
else if (!(use[e[i].from]&&use[e[i].to])) ans+=e[i].val;
}
}
void solve() {
bool same=1; int lst=0;
for (int i=1,u,v,w; i<=m; ++i) {
u=read(); v=read(); w=read(); sum+=w;
add(u, v, w); add(v, u, w);
if (lst&&w!=lst) same=0;
else lst=w;
}
dfs(1);
if (same && m>=n*(n-1)/2) {printf("%lld\n", 1ll*lst*(n-2)); exit(0);}
//for (int i=1; i<=n; ++i) cout<<use[i]<<' '; cout<<endl;
kruskal();
printf("%lld\n", sum-ans);
exit(0);
}
} namespace task{
ll dp[1<<16][16], sum[1<<16][16], tot;
int mp[16][16], lg[1<<16];
void solve() {
for (int i=1,u,v; i<=m; ++i) {
u=read()-1; v=read()-1;
tot+=(mp[u][v]=mp[v][u]=read());
}
int lim=1<<n; ll tem;
for (int i=0; i<n; ++i) lg[1<<i]=i;
for (reg s=1; s<lim; ++s) {
tem=0;
for (reg i=0; i<n; ++i) if (s&(1<<i))
for (reg j=i+1; j<n; ++j) if (s&(1<<j))
tem+=mp[i][j];
if (s&1) dp[s][0]=sum[s][0]=tem;
else for (reg i=0; i<n; ++i) if (s&(1<<i)) sum[s][i]=tem;
}
for (reg s=1,s2; s<lim; ++s) {
if (!(s&1)) continue;
for (reg s0=s2=(~s)&(lim-1); s0; s0=(s0-1)&s2)
for (reg i=s; i; i-=i&-i)
for (reg j=s0; j; j-=j&-j)
dp[s|s0][lg[j&-j]] = max(dp[s|s0][lg[j&-j]], dp[s][lg[i&-i]]+sum[s0][lg[j&-j]]+mp[lg[i&-i]][lg[j&-j]]);
#if 0
for (reg i=0; i<n; ++i) if (s&(1<<i))
for (reg j=0; j<n; ++j) if (s0&(1<<j)&&mp[i][j]) {
//if (dp[s][i]+sum[s0][j]+mp[i][j] > dp[s|s0][j]) cout<<"new ans"<<endl;
dp[s|s0][j] = max(dp[s|s0][j], dp[s][i]+sum[s0][j]+mp[i][j]);
//cout<<"upd "<<bitset<15>(s)<<' '<<bitset<15>(s0)<<' '<<i<<' '<<j<<' '<<dp[s][i]<<' '<<sum[s0][j]<<' '<<mp[i][j]<<endl;
}
#endif
}
//cout<<"dp: "<<dp[lim-1][n-1]<<endl;
printf("%lld\n", tot-dp[lim-1][n-1]);
exit(0);
}
} signed main()
{
n=read(); m=read();
task::solve(); return 0;
}

题解 Connect的更多相关文章

  1. LeetCode OJ 题解

    博客搬至blog.csgrandeur.com,cnblogs不再更新. 新的题解会更新在新博客:http://blog.csgrandeur.com/2014/01/15/LeetCode-OJ-S ...

  2. Connect the Cities(prime)

    Connect the Cities Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) ...

  3. usaco training 4.1.3 fence6 题解

    Fence Loops题解 The fences that surround Farmer Brown's collection of pastures have gotten out of cont ...

  4. usaco 2002 月赛 Fiber Communications 题解

    Description Farmer John wants to connect his N (1 <= N <= 1,000) barns (numbered 1..N) with a ...

  5. 【Codeforces Round】 #431 (Div. 2) 题解

    Codeforces Round #431 (Div. 2)  A. Odds and Ends time limit per test 1 second memory limit per test ...

  6. leetcode & lintcode 题解

    刷题备忘录,for bug-free 招行面试题--求无序数组最长连续序列的长度,这里连续指的是值连续--间隔为1,并不是数值的位置连续 问题: 给出一个未排序的整数数组,找出最长的连续元素序列的长度 ...

  7. Codeforces Round #542 [Alex Lopashev Thanks-Round] (Div. 2) 题解

    Codeforces Round #542 [Alex Lopashev Thanks-Round] (Div. 2) 题目链接:https://codeforces.com/contest/1130 ...

  8. CF 1130A 1130B 1130C1129A1 1129A2 1129B(Round542A B C D1 D2 E)题解

    A : Be Positive 题目地址:https://codeforces.com/problemset/problem/1130/A 题解:让你求是否满足一个d使得数列长为n的a数组的每个数除以 ...

  9. 【CodeChef】Find a special connected block - CONNECT(斯坦纳树)

    [CodeChef]Find a special connected block - CONNECT(斯坦纳树) 题面 Vjudge 题解 还是一样的套路题,把每个数字映射到\([0,K)\)的整数, ...

随机推荐

  1. java001-java基础

    基础数据类型 int--->Integer long--->Long float--->Float double--->Double boolean--->Boolean ...

  2. python 抓取异常

    aa={"a":2,"b":1} for i in range(10): aa["a"]=aa["a"]-i print ...

  3. File类与常用IO流第十一章——打印流

    第十一章.打印流 概述:java.io.PrintStream extends OutputStream,为其他输出流添加了功能,使题目能够方便的打印各种数据值表示形式. 特点: 只负责数据的输出,不 ...

  4. browse下载插件DownThemAll!

    DownThemAll!是一个不错的下载插件,它安装在各类browse上.

  5. [JS]闭包和词法环境

    词法环境 词法环境(lexical environment)由两个部分组成: 环境记录--一个存储所有局部变量作为其属性的对象. 对外部词法环境的引用,与外部代码相关联. 全局词法环境在脚本执行前创建 ...

  6. 【LeetCode】111. 二叉树的最小深度

    111. 二叉树的最小深度 知识点:二叉树,递归 题目描述 给定一个二叉树,找出其最小深度. 最小深度是从根节点到最近叶子节点的最短路径上的节点数量. 说明:叶子节点是指没有子节点的节点. 示例 输入 ...

  7. windows上安装python3里没有pip问题,解决办法!

    安装python3: 1.下载python:https://www.python.org/downloads/ 2.安装:   3.安装完成进cmd里验证,但发现无pip包 所以操作步骤如下: 1.下 ...

  8. redis故障时的一些概念

    1.缓存穿透 概念访问一个不存在的key,缓存不起作用,请求会穿透到DB,流量大时DB会挂掉. 解决方案采用布隆过滤器,使用一个足够大的bitmap,用于存储可能访问的key,不存在的key直接被过滤 ...

  9. 在LinuxMint 17 MATE中安装NVIDIA显卡驱动

    第一步:在Linux系统中安装Nvidia显卡驱动需要关闭X Server. 打开终端,进入ROOT权限,执行以下命令 $ sudo service mdm stop 此时将会把X Server关闭, ...

  10. Unsupported major.minor version 52.0解决办法【转】

    1.首先解释一下报错原因: stanford parser和jdk版本对应关系 J2SE8=52, J2SE7=51, J2SE6.0=50, J2SE5.0=49, JDK1.4=48, JDK1. ...