NOIP 模拟 $26\; \rm 降雷皇$
题解 \(by\;zj\varphi\)
用树状数组优化一下求最长上升子序列即可。
至于第二问,在求出答案后开 \(n\) 棵线段树,每颗维护当前最长上升子序列长度的方案数。
Code
#include<bits/stdc++.h>
#define ri register signed
#define p(i) ++i
using namespace std;
namespace IO{
char buf[1<<21],*p1=buf,*p2=buf,OPUT[100];
#define gc() p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?(-1):*p1++
template<typename T>inline void read(T &x) {
ri f=1;x=0;register char ch=gc();
while(!isdigit(ch)) {if (ch=='-') f=0;ch=gc();}
while(isdigit(ch)) {x=(x<<1)+(x<<3)+(ch^48);ch=gc();}
x=f?x:-x;
}
template<typename T>inline void print(T x) {
if (x<0) putchar('-'),x=-x;
if (!x) return putchar('0'),(void)putchar('\n');
ri cnt(0);
while(x) OPUT[p(cnt)]=x%10,x/=10;
for (ri i(cnt);i;--i) putchar(OPUT[i]^48);
return (void)putchar('\n');
}
}
using IO::read;using IO::print;
namespace nanfeng{
#define FI FILE *IN
#define FO FILE *OUT
template<typename T>inline T cmax(T x,T y) {return x>y?x:y;}
template<typename T>inline T cmin(T x,T y) {return x>y?y:x;}
typedef long long ll;
static const int N=1e7+7;
int vis[N],phi[N],prim[N],nm[N],cnt,sn;
ll n,ans;
inline void Getphi(int n) {
for (ri i(2);i<=n;p(i)) {
if (!vis[i]) phi[i]=i-1,vis[prim[p(cnt)]=i]=i;
for (ri j(1);j<=cnt&&prim[j]*i<=n;p(j)) {
int nw=i*prim[j];
vis[nw]=prim[j];
if (vis[i]==prim[j]) {
phi[nw]=phi[i]*prim[j];
break;
}
else phi[nw]=phi[i]*(prim[j]-1);
}
}
}
inline int main() {
//FI=freopen("nanfeng.in","r",stdin);
//FO=freopen("nf.out","w",stdout);
read(n);
sn=sqrt(n);
Getphi(sn);
for (ri i(2);i<=sn;p(i)) ans+=(ll)phi[i]*(n/i/i);
print(ans);
return 0;
}
}
int main() {return nanfeng::main();}
NOIP 模拟 $26\; \rm 降雷皇$的更多相关文章
- NOIP 模拟 $26\; \rm 神炎皇$
题解 \(by\;zj\varphi\) 一道 \(\varphi()\) 的题. 对于一个合法的数对,设它为 \((a*m,b*m)\) 则 \(((a+b)*m)|a*b*m^2\),所以 \(( ...
- 【JZOJ4920】【NOIP2017提高组模拟12.10】降雷皇
题目描述 降雷皇哈蒙很喜欢雷电,他想找到神奇的电光. 哈蒙有n条导线排成一排,每条导线有一个电阻值,神奇的电光只能从一根导线传到电阻比它大的上面,而且必须从左边向右传导,当然导线不必是连续的. 哈蒙想 ...
- NOIP 模拟 $26\; \rm 幻魔皇$
题解 \(by\;zj\varphi\) 观察可发现一个点向它的子树走能到的白点,黑点数是一个斐波那契数列. 对于白色点对,可以分成两种情况: 两个白点的 \(lca\) 是其中一个白点 两个白点的 ...
- NOIP模拟26「神炎皇·降雷皇·幻魔皇」
T1:神炎皇 又是数学题,气死,根本不会. 首先考虑式子\(a+b=ab\),我们取\(a\)与\(b\)的\(gcd\):\(d\),那么式子就可以改写成: \[(a'+b')*d=a'b' ...
- 「10.10」神炎皇(欧拉函数)·降雷皇(线段树,DP)·幻魔皇
A. 神炎皇 很好的一道题,可能第一次在考场上遇到欧拉函数 题意:对于一个整数对 $(a,b)$,若满足 $a\times b\leq n$且$a+b$是$a\times b$的因子, 则称为神奇的数 ...
- noip模拟26[肾炎黄·酱累黄·换莫黄]
\(noip模拟26\;solutions\) 这个题我做的确实是得心应手,为啥呢,因为前两次考试太难了 T1非常的简单,只不过我忘记了一个定理, T2就是一个小小的线段树,虽然吧我曾经说过我再也不写 ...
- [考试总结]noip模拟26
首先看到这样中二的题目心头一震.... 然而发现又是没有部分分数的一天. 然而正解不会打.... 那还是得要打暴力. 但是这套题目有两个题目只有一个参数. 所以... (滑稽).jpg 然后我就成功用 ...
- 2021.7.28考试总结[NOIP模拟26]
罕见的又改完了. T1 神炎皇 吸取昨天三个出规律的教训,开场打完T2 20pts直接大力打表1h. 但怎么说呢,我不懂欧拉函数.(其实exgcd都忘了 于是只看出最大平方因子,不得不线性筛,爆拿60 ...
- [CSP-S模拟测试]:降雷皇(DP+树状数组)
题目描述 降雷皇哈蒙很喜欢雷电,他想找到神奇的电光.哈蒙有$n$条导线排成一排,每条导线有一个电阻值,神奇的电光只能从一根导线传到电阻比它大的上面,而且必须从左边向右传导,当然导线不必是连续的.哈蒙想 ...
随机推荐
- XCTF Normal_RSA
这题本来算是很常规的rsa了,下载附件 发现有个公钥文件,还有一个加密文件,这种题之前有遇到一次,做法和这个类似,上次那个是用rsa的库,直接解的,这次直接用常规的,好像更简单,记录下模板 记事本打开 ...
- Spring MVC中的M V C
M→Model 模型 V→View 视图 C→Controller 控制器 也就是说一次交互由生到死(请求到相应) 需要经过 这三个层级 来完成 那么为什么这么设计 这么设计又有什么好处 我是这么认为 ...
- SVN教程(包括小乌龟) 全图解
转载自http://www.cnblogs.com/armyfai/p/3985660.html SVN使用教程总结 SVN简介: 为什么要使用SVN? 程序员在编写程序的过程中,每个程序员都会生成很 ...
- .net core番外第一篇:Autofac的几种常见注入方式、生命周期和AOP
使用Autofac进行服务注册实践: 新建三个项目,分别是webapi项目 Wesky.Core.Autofac以及两个类库项目 Wesky.Core.Interface和Wesky.Core.Ser ...
- 第十三天 -- 如何用U盘重装系统Win10以及如何用VMware12安装Win10
U盘制作启动盘 1.在电脑上插入U盘,关闭安全软件杀毒工具,然后打开装机吧U盘启动盘制作工具 2.选择刚插入的U盘,勾选上,点击一键制作启动U盘,制作前U盘数据必须转移备份: 3.选择格式化U盘,记得 ...
- mysql为什么用b+树做索引
关键字就是key的意思 一.B-Tree的性质 1.定义任意非叶子结点最多只有M个儿子,且M>2: 2.根结点的儿子数为[2, M]: 3.除根结点以外的非叶子结点的儿子数为[M/2, M]: ...
- 在Python中执行普通除法
如果希望Python只执行普通的除法,那么可以在程序前加上以下语句: 1 from _future_ import division 如果通过命令行(比如在Linux系统上)运行Python,可以使用 ...
- python之 数据类型限制
问题增加类型限制 NameError: name 'List' is not defined def twoSum(self, nums: List[int], target: int) -> ...
- 🏆【Java技术专区】「并发编程专题」教你如何使用异步神器CompletableFuture
前提概要 在java8以前,我们使用java的多线程编程,一般是通过Runnable中的run方法来完成,这种方式,有个很明显的缺点,就是,没有返回值.这时候,大家可能会去尝试使用Callable中的 ...
- npx的使用方法、场景
目录 npx使用教程 npm与npx的概念 npx的使用场景(对比npm的一些优势) 使用场景1: 想用项目中已经安装好的某个包, 但是不能直接执行(因为没有全局安装, 涉及环境变量的问题) 使用场景 ...