Content

小 S 想买下一块地。他所在的城市可以看成一个 \(n\times m\) 的网格,要购买所处在 \((i,j)\) 的网格需要缴税 \(c_{i,j}\) 元,如果一块地里面有多个网格,则所要缴的税为每个网格需要缴税的和。小 S 手头有 \(K\) 块钱,他想知道他最多能够买下多大面积的地,并且想知道所有满足要求的地中缴税最少的一块地所要缴的税。注意他能买的一块地只能是一个矩形。

形式化题意: 有一个 \(n\times m\) 的矩阵,在 \((i,j)\) 上的元素有一个权值 \(c_{i,j}\),你想知道能够选出权值和 \(\leqslant K\) 的所有子矩阵中包含最多元素的矩阵的元素个数以及在满足元素个数最大的条件下这个子矩阵中权值和的最小值。

数据范围:\(t\) 组数据,\(1\leqslant t\leqslant 110\),\(1\leqslant n,m\leqslant 10^9\),\(1\leqslant K\leqslant 10^9\),\(1\leqslant c_{i,j}\leqslant 10^6\)。

Solution

思路简单的二维前缀和问题。

我们先通过 \(\mathcal O(nm)\) 的复杂度把 \(s_{i,j}=\sum\limits_{x=1}^i\sum\limits_{y=1}^j c_{i,j}\) 预处理出来。当然 \(\mathcal O(n^2m^2)\) 的暴力计算在本题中貌似也可以,但还是讲讲前缀和怎么处理吧。

通过这个图我们不难发现,其中红色的部分是 \(s_{i-1,j}+s_{i,j-1}\) 而导致的重复的部分,也就是 \(s_{i-1,j-1}\),需要减一个。

因此可以很容易推出来 \(s_{i,j}=s_{i-1,j}+s_{i,j-1}-s_{i-1,j-1}+c_{i,j}\)。

然后我们再直接暴力枚举选取的矩阵的左上角 \((i_1,j_1)\) 和右下角 \((i_2,j_2)\)。然后这块地的 \(\sum\limits_i\sum\limits_jc_{i,j}\) 的公式推导类似于上面,只不过先要减去两个大的矩阵,再加回去两个矩阵重复减的部分。即为 \(s_{i_2,j_2}-s_{i_1-1,j_2}-s_{i_2,j_1-1}+s_{i_1-1,j_1-1}\)。面积倒很简单求,就是 \((i_2-i_1+1)(j_2-j_1+1)\)。然后拿它和当前的面积最大值进行比较:

  • 如果比当前最大面积小,那就想都不用想,直接跳过。
  • 如果和当前最大面积一样(注意!!!这里如果直接看原题面容易被坑到,这也是我要在翻译里面把要求的东西解释的如此复杂的原因),不要直接跳过,要把这块地的价值和当前的在最大面积下的价值和最小值进行比较,如果比当前的在最大面积下的价值和最小值小的话需要更新!
  • 如果比当前最大面积小,更新面积,并且同时更新价值和最小值(因为现在有了新的最大面积,原来的最大面积下的价值和最小值就得要覆盖)。

最后把求出来的东西输出即可。

Code

int c[107][107];
ll s[107][107]; int main() {
int t = Rint;
F(int, test, 1, t) {
memset(s, 0ll, sizeof(s));
int n = Rint, m = Rint, ans = 0; ll k = Rll, cost = 0;
F(int, i, 1, n) F(int, j, 1, m) c[i][j] = Rint;
F(int, i, 1, n) F(int, j, 1, m) s[i][j] = s[i - 1][j] + s[i][j - 1] - s[i - 1][j - 1] + c[i][j];
F(int, i, 1, n) F(int, j, 1, m) F(int, i2, i, n) F(int, j2, j, m) {
ll p = s[i2][j2] - s[i - 1][j2] - s[i2][j - 1] + s[i - 1][j - 1];
if(p <= k) cost = (ans == (i2 - i + 1) * (j2 - j + 1) ? min(cost, p) : (ans < (i2 - i + 1) * (j2 - j + 1) ? p : cost)), ans = max(ans, (i2 - i + 1) * (j2 - j + 1));
}
printf("Case #%d: %d %lld\n", test, ans, cost);
}
return 0;
}

UVA11951 Area 题解的更多相关文章

  1. HPU周赛题目解析

    A - Wilbur and Swimming Pool Time Limit:1000MS     Memory Limit:262144KB     64bit IO Format:%I64d & ...

  2. Maximal Rectangle leetcode java

    题目: Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones ...

  3. 【leetcode刷题笔记】Maximal Rectangle

    Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and ...

  4. 【题解】CIRU - The area of the union of circles [SP8073] \ 圆的面积并 [Bzoj2178]

    [题解]CIRU - The area of the union of circles [SP8073] \ 圆的面积并 [Bzoj2178] 传送门: \(\text{CIRU - The area ...

  5. POJ1389:Area of Simple Polygons——扫描线线段树题解+全套代码注释

    http://poj.org/problem?id=1389 题面描述在二维xy平面中有N,1 <= N <= 1,000个矩形.矩形的四边是水平或垂直线段.矩形由左下角和右上角的点定义. ...

  6. 题解——面积(area.cpp)

    题目来源&题面简述: 思路与算法选择: 只有*里面的部分对我们有用,所以可以将 *号外的部分标记一下. 可以用著名的BFS大法实现此过程.(连通块) 连通块模板: #include<bi ...

  7. POJ 1927 Area in Triangle 题解

    link Description 给出三角形三边长,给出绳长,问绳在三角形内能围成的最大面积.保证绳长 \(\le\) 三角形周长. Solution 首先我们得知道,三角形的内切圆半径就是三角形面积 ...

  8. hdu 4946 Area of Mushroom(凸包)

    链接:http://acm.hdu.edu.cn/showproblem.php?pid=4946 Area of Mushroom Time Limit: 2000/1000 MS (Java/Ot ...

  9. poj 1654 Area (多边形求面积)

    链接:http://poj.org/problem?id=1654 Area Time Limit: 1000MS   Memory Limit: 10000K Total Submissions:  ...

随机推荐

  1. Class类简介

    Class类 Java中所有的类.接口.枚举.注解.数组.基本数据类型.void关键字,都有Class对象.通过Class对象可以得到类的完整结构,一个Class对象在jvm中只有一个实例. 获取类实 ...

  2. nothing to commit, working tree clean

    本地git提交代码,没有发现有什么啥情况. 本地代码提交不上去

  3. nacos的简单使用

    1.根据自身情况下载稳定版本:https://github.com/alibaba/nacos/releases2.安装:zip包 cmd运行: 8848端口cmd startup.cmd3.登录名密 ...

  4. 洛谷 P6276 - [USACO20OPEN]Exercise P(组合数学+DP)

    洛谷题面传送门 废了,又不会做/ll orz czx 写的什么神仙题解,根本看不懂(%%%%%%%%% 首先显然一个排列的贡献为其所有置换环的乘积.考虑如何算之. 碰到很多数的 LCM 之积只有两种可 ...

  5. 【2020五校联考NOIP #3】序列

    题面传送门 原题题号:Codeforces Gym 101821B 题意: 给出一个排列 \(p\),要你找出一个最长上升子序列(LIS)和一个最长下降子序列(LDS),满足它们没有公共元素.或告知无 ...

  6. matplotlib 画饼图

    有个瑕疵,某一块儿比例过小时,文字会重叠. 1 def pizza(data,labs,title): 2 import matplotlib 3 import matplotlib.pyplot a ...

  7. 论文翻译:2020_Weighted speech distortion losses for neural-network-based real-time speech enhancement

    论文地址:基于神经网络的实时语音增强的加权语音失真损失 论文代码:https://github.com/GuillaumeVW/NSNet 引用:Xia Y, Braun S, Reddy C K A ...

  8. 16. Linux find查找文件及文件夹命令

    find的主要用来查找文件,查找文件的用法我们比较熟悉,也可用它来查找文件夹,用法跟查找文件类似,只要在最后面指明查找的文件类型 -type d,如果不指定type类型,会将包含查找内容的文件和文件夹 ...

  9. 手淘lib-flexible布局适配方案

    前置知识:什么是rem CSS3新增的一个相对单位rem(root em,根em).rem是相对于根节点(或者是html节点).如果根节点设置了font-size:10px;那么font-size:1 ...

  10. swift 实现QQ好友列表功能

    最近项目中有类似QQ好友列表功能,整理了一下,话不多说,直接上代码 import UIKit class QQFriend: NSObject { var name: String? var intr ...