MySQL:互联网公司常用分库分表方案汇总!
转载别人
一、数据库瓶颈
不管是IO瓶颈,还是CPU瓶颈,最终都会导致数据库的活跃连接数增加,进而逼近甚至达到数据库可承载活跃连接数的阈值。在业务Service来看就是,可用数据库连接少甚至无连接可用。接下来就可以想象了吧(并发量、吞吐量、崩溃)。
1、IO瓶颈
第一种:磁盘读IO瓶颈,热点数据太多,数据库缓存放不下,每次查询时会产生大量的IO,降低查询速度 -> 分库和垂直分表。
第二种:网络IO瓶颈,请求的数据太多,网络带宽不够 -> 分库。
2、CPU瓶颈
第一种:SQL问题,如SQL中包含join,group by,order by,非索引字段条件查询等,增加CPU运算的操作 -> SQL优化,建立合适的索引,在业务Service层进行业务计算。
第二种:单表数据量太大,查询时扫描的行太多,SQL效率低,CPU率先出现瓶颈 -> 水平分表。
二、分库分表
1、水平分库
概念:以字段为依据,按照一定策略(hash、range等),将一个库中的数据拆分到多个库中。
结果:
每个库的结构都一样;
每个库的数据都不一样,没有交集;
所有库的并集是全量数据;
场景:系统绝对并发量上来了,分表难以根本上解决问题,并且还没有明显的业务归属来垂直分库。
分析:库多了,io和cpu的压力自然可以成倍缓解。
2、水平分表
概念:以字段为依据,按照一定策略(hash、range等),将一个表中的数据拆分到多个表中。
结果:
每个表的结构都一样;
每个表的数据都不一样,没有交集;
所有表的并集是全量数据;
场景:系统绝对并发量并没有上来,只是单表的数据量太多,影响了SQL效率,加重了CPU负担,以至于成为瓶颈。推荐:一次SQL查询优化原理分析
分析:表的数据量少了,单次SQL执行效率高,自然减轻了CPU的负担。
3、垂直分库
概念:以表为依据,按照业务归属不同,将不同的表拆分到不同的库中。
结果:
每个库的结构都不一样;
每个库的数据也不一样,没有交集;
所有库的并集是全量数据;
场景:系统绝对并发量上来了,并且可以抽象出单独的业务模块。
分析:到这一步,基本上就可以服务化了。
例如,随着业务的发展一些公用的配置表、字典表等越来越多,这时可以将这些表拆到单独的库中,甚至可以服务化。再有,随着业务的发展孵化出了一套业务模式,这时可以将相关的表拆到单独的库中,甚至可以服务化。
4、垂直分表
概念:以字段为依据,按照字段的活跃性,将表中字段拆到不同的表(主表和扩展表)中。
结果:
每个表的结构都不一样;
每个表的数据也不一样,一般来说,每个表的字段至少有一列交集,一般是主键,用于关联数据;
所有表的并集是全量数据;
场景:系统绝对并发量并没有上来,表的记录并不多,但是字段多,并且热点数据和非热点数据在一起,单行数据所需的存储空间较大。以至于数据库缓存的数据行减少,查询时会去读磁盘数据产生大量的随机读IO,产生IO瓶颈。
分析:可以用列表页和详情页来帮助理解。垂直分表的拆分原则是将热点数据(可能会冗余经常一起查询的数据)放在一起作为主表,非热点数据放在一起作为扩展表。这样更多的热点数据就能被缓存下来,进而减少了随机读IO。拆了之后,要想获得全部数据就需要关联两个表来取数据。
但记住,千万别用join,因为join不仅会增加CPU负担并且会讲两个表耦合在一起(必须在一个数据库实例上)。关联数据,应该在业务Service层做文章,分别获取主表和扩展表数据然后用关联字段关联得到全部数据。
三、分库分表工具
sharding-sphere:jar,前身是sharding-jdbc;
TDDL:jar,Taobao Distribute Data Layer;
Mycat:中间件。
注:工具的利弊,请自行调研,官网和社区优先。
四、分库分表步骤
根据容量(当前容量和增长量)评估分库或分表个数 -> 选key(均匀)-> 分表规则(hash或range等)-> 执行(一般双写)-> 扩容问题(尽量减少数据的移动)。
五、分库分表问题
1、非partition key的查询问题
基于水平分库分表,拆分策略为常用的hash法。
端上除了partition key只有一个非partition key作为条件查询
映射法
基因法
注:写入时,基因法生成user_id,如图。关于xbit基因,例如要分8张表,23=8,故x取3,即3bit基因。根据user_id查询时可直接取模路由到对应的分库或分表。
根据user_name查询时,先通过user_name_code生成函数生成user_name_code再对其取模路由到对应的分库或分表。id生成常用snowflake算法。
端上除了partition key不止一个非partition key作为条件查询
映射法
冗余法
注:按照order_id或buyer_id查询时路由到db_o_buyer库中,按照seller_id查询时路由到db_o_seller库中。感觉有点本末倒置!有其他好的办法吗?改变技术栈呢?
后台除了partition key还有各种非partition key组合条件查询
NoSQL法
冗余法
2、非partition key跨库跨表分页查询问题
基于水平分库分表,拆分策略为常用的hash法。
注:用NoSQL法解决(ES等)。
3、扩容问题
基于水平分库分表,拆分策略为常用的hash法。
水平扩容库(升级从库法)
注:扩容是成倍的。
水平扩容表(双写迁移法)
第一步:(同步双写)修改应用配置和代码,加上双写,部署;
第二步:(同步双写)将老库中的老数据复制到新库中;
第三步:(同步双写)以老库为准校对新库中的老数据;
第四步:(同步双写)修改应用配置和代码,去掉双写,部署;
注:双写是通用方案。
六、分库分表总结
分库分表,首先得知道瓶颈在哪里,然后才能合理地拆分(分库还是分表?水平还是垂直?分几个?)。且不可为了分库分表而拆分。
选key很重要,既要考虑到拆分均匀,也要考虑到非partition key的查询。
只要能满足需求,拆分规则越简单越好。
七、分库分表示例
示例GitHub地址:https://github.com/littlecharacter4s/study-sharding
MySQL:互联网公司常用分库分表方案汇总!的更多相关文章
- MySQL:互联网公司常用分库分表方案汇总!
一.数据库瓶颈 不管是IO瓶颈,还是CPU瓶颈,最终都会导致数据库的活跃连接数增加,进而逼近甚至达到数据库可承载活跃连接数的阈值.在业务Service来看就是,可用数据库连接少甚至无连接可用.接下来就 ...
- MySQL数据库之互联网常用分库分表方案
一.数据库瓶颈 不管是IO瓶颈,还是CPU瓶颈,最终都会导致数据库的活跃连接数增加,进而逼近甚至达到数据库可承载活跃连接数的阈值.在业务Service来看就是,可用数据库连接少甚至无连接可用.接下来就 ...
- mysql、oracle分库分表方案之sharding-jdbc使用(非demo示例)
选择开源核心组件的一个非常重要的考虑通常是社区活跃性,一旦项目团队无法进行自己后续维护和扩展的情况下更是如此. 至于为什么选择sharding-jdbc而不是Mycat,可以参考知乎讨论帖子https ...
- 【分库、分表】MySQL分库分表方案
一.Mysql分库分表方案 1.为什么要分表: 当一张表的数据达到几千万时,你查询一次所花的时间会变多,如果有联合查询的话,我想有可能会死在那儿了.分表的目的就在于此,减小数据库的负担,缩短查询时间. ...
- MySQL 分库分表方案,总结的非常好!
前言 公司最近在搞服务分离,数据切分方面的东西,因为单张包裹表的数据量实在是太大,并且还在以每天60W的量增长. 之前了解过数据库的分库分表,读过几篇博文,但就只知道个模糊概念, 而且现在回想起来什么 ...
- 基于Mysql数据库亿级数据下的分库分表方案
移动互联网时代,海量的用户数据每天都在产生,基于用户使用数据的用户行为分析等这样的分析,都需要依靠数据都统计和分析,当数据量小时,问题没有暴露出来,数据库方面的优化显得不太重要,一旦数据量越来越大时, ...
- Mysql 分库分表方案
0 引言 当一张表的数据达到几千万时,你查询一次所花的时间会变多,如果有联合查询的话,我想有可能会死在那儿了.分表的目的就在于此,减小数据库的负担,缩短查询时间. mysql中有一种机制是表锁定和行锁 ...
- Mysql分库分表方案
Mysql分库分表方案 1.为什么要分表: 当一张表的数据达到几千万时,你查询一次所花的时间会变多,如果有联合查询的话,我想有可能会死在那儿了.分表的目的就在于此,减小数据库的负担,缩短查询时间. m ...
- Mysql 之分库分表方案
Mysql分库分表方案 为什么要分表 当一张表的数据达到几千万时,你查询一次所花的时间会变多,如果有联合查询的话,我想有可能会死在那儿了.分表的目的就在于此,减小数据库的负担,缩短查询时间. mysq ...
随机推荐
- python03篇 字符串常用方法和文件操作(一)
一.字符串常用方法 s1 = ' abcsfsfaadfdd ' s = s1.strip() print(s) print(len(s.strip())) print(s.count('a')) # ...
- 从新建文件夹开始构建ShadowPlay Engine游戏引擎(4)
本篇序言 这次博客更新距离上次的时间间隔变短了好多,因为最近硬是抽出了一大部分时间来进行引擎的开发.而且运气很好的是在写链表这种很"敏感"的的数据结构的时候并没有出现那种灾难性的后 ...
- Hive——基本DML语句
Hive--基本DML语句 DML:Data Manipulation Language(数据操作语言,与关系型数据库相似) 官方手册:https://cwiki.apache.org/conflue ...
- 【C#】C#中使用GDAL3(一):Windows下超详细编译C#版GDAL3.3.0(VS2015+.NET 4+32位/64位)
转载请注明原文地址:https://www.cnblogs.com/litou/p/15004877.html 目录 一.介绍 二.编译准备 三.编译SQLite 四.编译LibTiff 五.编译PR ...
- CH1809 匹配统计 题解
看了好久才懂,我好菜啊-- 题意:给两个字符串 \(a\) 与 \(b\),对于 \(q\) 次询问,每次询问给出一个 \(x\),求存在多少个位置使得 \(a\) 从该位置开始的后缀子串与 \(b\ ...
- python项目案例
python项目案例1:----此学习案例用python3编写,摘自明日科技,感谢! 学生管理系统: 功能描述:具有增删改查,排序,保存并显示学生的全部信息. 1.主界面---函数menu(),显示功 ...
- python开发,注意事项
提高python代码运行效率 1.使用生成器,节约内存.[一边循环一边计算的机制,称为生成器:generator] 例: .如何创建生成器 1.只要把一个列表生成式的[]改成(),就创建了一个gene ...
- g6踩坑
1. 当父元素有transform: scale()时,有鼠标定位不准确的问题 // 开启支持css缩放,智能保证基本的准确,很多情况还是有问题 graph.get('canvas').set('su ...
- noip模拟29[简单的板子题](虽然我不会)
\(noip模拟29\;solutions\) 这次考试给我最大的伤害,让我意识到了差距 这场考试可以说是非常的简单,就是简单到,看两眼,打个表就有结果了 但是呢?我考得非常的完蛋,只有30pts 据 ...
- expect命令和here document免交互
目录 一.Here Document免交互 1.1 概述 1.2 语法格式 1.3 简单案例 1.4 支持变量替换 1.5 多行注释 1.6 完成自动划分磁盘免交互 二.Expect进行免交互 2.1 ...