Sum of Consecutive Integers

题目链接

题意

问N能够分解成多少种不同的连续数的和.

思路

连续数是一个等差数列:$$

\frac{(2a1 + n -1)n}{2} = T$$

那么\(\frac{2*T}{n}-n = 2*a1-1\),所以当\(n\)为\(T\)的奇因子的时候符合要求.

那么当\(n\)为偶数的时候\(\frac{2*T}{n}-(n-1) = 2*a1\);因为\((n-1)\)为奇数,\(2*a1\)为偶数,所以\(\frac{2T}{n}\)为奇数,所以另\(t\)上下含有的2的个数,必定上下含有2的个数必定相等,\(t = 2^t\)那么就得到\(\frac{\frac{2T}{t}}{\frac{n}{t}}\),那么另\(u = \frac{n}{t}\)那么\(u\)就是\(T\)的奇数因子,那么\(n = u*t\)就行了,因为每个\(n\)的值会一一对应一个连续的序列,所以即使当\(n\)为偶数的时候是通过求\(T\)的奇数因子而求得.所以通过求\(n\)为奇数时和\(n\)为偶数时,都是求T的奇数因子而求得,那么所有的种数就是求\(T\)的奇数因子的个数,除去1的时候。

然后就素数打表,\(T = p1^{k1} * p2^{k2}*p3^{k3}*...pn^{kn}\),那么如果\(T\)为偶数的话就把\(p\)为2的去掉,那么奇数因子个数就为\((k1+1)*(k2+1)*...(kn+1)\),最后再减个1就行了.

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
bool prime[10000005];
int table_prime[1000005];
int main(void)
{
for(int i = 2; i < 10000; i++)
{
if(!prime[i])
for(int j = i; (i*j) <= 10000000; j++)
prime[i*j] = true;
}
int cn = 0;
for(int i = 2; i <= 10000000; i++)
if(!prime[i])
table_prime[cn++] = i;
int T;
scanf("%d",&T);
int __cn = 0;
while(T--)
{
LL n;
scanf("%lld",&n);
int f = 1;
LL u = 0,sum = 1;
while(n%2 == 0)
n/=2;
while(n > 1&&f < cn)
{
if((LL)table_prime[f]*(LL)table_prime[f] > n)
break;
while(n%table_prime[f] == 0)
{
u++;
n/=table_prime[f];
}
sum = sum * (u+1);
u = 0;
f++;
}
if(n > 1)
sum *= (LL)2;
sum--;
printf("Case %d: ",++__cn);
printf("%lld\n",sum);
}
return 0;
}

Sum of Consecutive Integers的更多相关文章

  1. LightOj 1278 - Sum of Consecutive Integers(求奇因子的个数)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1278 题意:给你一个数n(n<=10^14),然后问n能用几个连续的数表示; 例 ...

  2. Sum of Consecutive Integers LightOJ - 1278(推公式 数学思维)

    原文地址:https://blog.csdn.net/qq_37632935/article/details/79465213 给你一个数n(n<=10^14),然后问n能用几个连续的数表示; ...

  3. LightOJ 1278 - Sum of Consecutive Integers 分解奇因子 + 思维

    http://www.lightoj.com/volume_showproblem.php?problem=1278 题意:问一个数n能表示成几种连续整数相加的形式 如6=1+2+3,1种. 思路:先 ...

  4. POJ 2739. Sum of Consecutive Prime Numbers

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 20050 ...

  5. POJ 2739 Sum of Consecutive Prime Numbers(尺取法)

    题目链接: 传送门 Sum of Consecutive Prime Numbers Time Limit: 1000MS     Memory Limit: 65536K Description S ...

  6. ACM:POJ 2739 Sum of Consecutive Prime Numbers-素数打表-尺取法

    POJ 2739 Sum of Consecutive Prime Numbers Time Limit:1000MS     Memory Limit:65536KB     64bit IO Fo ...

  7. POJ2739 Sum of Consecutive Prime Numbers 2017-05-31 09:33 47人阅读 评论(0) 收藏

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 25225 ...

  8. Sum of Consecutive Prime Numbers

    Sum of Consecutive Prime Numbers http://poj.org/problem?id=2739 Time Limit: 1000MS   Memory Limit: 6 ...

  9. poj 2739 Sum of Consecutive Prime Numbers 素数 读题 难度:0

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19697 ...

随机推荐

  1. MariaDB——简介

    一.MariaDB跟MySQL在绝大多数方面是兼容的,对于开发者来说,几乎感觉不到任何不同.是MySQL的代替品. MariaDB虽然被视为MySQL数据库的替代品,但它在扩展功能.存储引擎以及一些新 ...

  2. ubuntu安装配置ssh-connect to host localhost port 22: Connection refused

    在安装ssh,经常出现 ssh: connect to host localhost port 22: Connection refused 从以下几点去检查: 1.是否安装ssh-server: 打 ...

  3. 一个简单的BypassUAC编写

    什么是UAC? UAC是微软为提高系统安全而在Windows Vista中引入的新技术,它要求用户在执行可能会影响计算机运行的操作或执行更改影响其他用户的设置的操作之前,提供权限或管理员‌密码.通过在 ...

  4. 巩固javaweb的第三十一天

    巩固内容 变量的作用范围 如果要访问的信息在 pageScope.requestScope.sessionScope 和 applicationScope 中存储, 则使用表达式语言访问的时候可以直接 ...

  5. E: Unable to fetch some archives, maybe run apt-get update or try with --fix-missing

    解决办法:apt-get update或者apt-get cleanapt-get update 或者 apt-get update --fix-missing问题解析1 source本身的问题 根据 ...

  6. 如果通过 IP 判断是否是爬虫

    通过 IP 判断爬虫 如果你查看服务器日志,看到密密麻麻的 IP 地址,你一眼可以看出来那些 IP 是爬虫,那些 IP 是正常的爬虫,就像这样: 在这密密麻麻的日志里面,我们不仅要分辨出真正的爬虫 I ...

  7. int是几位;short是几位;long是几位 负数怎么表示

    其实可以直接通过stm32的仿真看到结果:(这里是我用keil进行的测试,不知道这种方法是否准确) 从上面看, char是8位  short是4*4=16位  int是8*4=32位  long是8* ...

  8. Virtual Destructor

    Deleting a derived class object using a pointer to a base class that has a non-virtual destructor re ...

  9. matplotlib画直线图的基本用法

    一  figure使用 1 import numpy as np 2 import matplotlib.pyplot as plt 3 4 # 从-3到中取50个数 5 x = np.linspac ...

  10. BigDecimal中要注意的一些事

    一.关于public BigDecimal(double val) BigDecimal中三个主要的构造函数 1 public BigDecimal(double val) 将double表示形式转换 ...