Sum of Consecutive Integers

题目链接

题意

问N能够分解成多少种不同的连续数的和.

思路

连续数是一个等差数列:$$

\frac{(2a1 + n -1)n}{2} = T$$

那么\(\frac{2*T}{n}-n = 2*a1-1\),所以当\(n\)为\(T\)的奇因子的时候符合要求.

那么当\(n\)为偶数的时候\(\frac{2*T}{n}-(n-1) = 2*a1\);因为\((n-1)\)为奇数,\(2*a1\)为偶数,所以\(\frac{2T}{n}\)为奇数,所以另\(t\)上下含有的2的个数,必定上下含有2的个数必定相等,\(t = 2^t\)那么就得到\(\frac{\frac{2T}{t}}{\frac{n}{t}}\),那么另\(u = \frac{n}{t}\)那么\(u\)就是\(T\)的奇数因子,那么\(n = u*t\)就行了,因为每个\(n\)的值会一一对应一个连续的序列,所以即使当\(n\)为偶数的时候是通过求\(T\)的奇数因子而求得.所以通过求\(n\)为奇数时和\(n\)为偶数时,都是求T的奇数因子而求得,那么所有的种数就是求\(T\)的奇数因子的个数,除去1的时候。

然后就素数打表,\(T = p1^{k1} * p2^{k2}*p3^{k3}*...pn^{kn}\),那么如果\(T\)为偶数的话就把\(p\)为2的去掉,那么奇数因子个数就为\((k1+1)*(k2+1)*...(kn+1)\),最后再减个1就行了.

代码

#include<bits/stdc++.h>
using namespace std;
typedef long long LL;
bool prime[10000005];
int table_prime[1000005];
int main(void)
{
for(int i = 2; i < 10000; i++)
{
if(!prime[i])
for(int j = i; (i*j) <= 10000000; j++)
prime[i*j] = true;
}
int cn = 0;
for(int i = 2; i <= 10000000; i++)
if(!prime[i])
table_prime[cn++] = i;
int T;
scanf("%d",&T);
int __cn = 0;
while(T--)
{
LL n;
scanf("%lld",&n);
int f = 1;
LL u = 0,sum = 1;
while(n%2 == 0)
n/=2;
while(n > 1&&f < cn)
{
if((LL)table_prime[f]*(LL)table_prime[f] > n)
break;
while(n%table_prime[f] == 0)
{
u++;
n/=table_prime[f];
}
sum = sum * (u+1);
u = 0;
f++;
}
if(n > 1)
sum *= (LL)2;
sum--;
printf("Case %d: ",++__cn);
printf("%lld\n",sum);
}
return 0;
}

Sum of Consecutive Integers的更多相关文章

  1. LightOj 1278 - Sum of Consecutive Integers(求奇因子的个数)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1278 题意:给你一个数n(n<=10^14),然后问n能用几个连续的数表示; 例 ...

  2. Sum of Consecutive Integers LightOJ - 1278(推公式 数学思维)

    原文地址:https://blog.csdn.net/qq_37632935/article/details/79465213 给你一个数n(n<=10^14),然后问n能用几个连续的数表示; ...

  3. LightOJ 1278 - Sum of Consecutive Integers 分解奇因子 + 思维

    http://www.lightoj.com/volume_showproblem.php?problem=1278 题意:问一个数n能表示成几种连续整数相加的形式 如6=1+2+3,1种. 思路:先 ...

  4. POJ 2739. Sum of Consecutive Prime Numbers

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 20050 ...

  5. POJ 2739 Sum of Consecutive Prime Numbers(尺取法)

    题目链接: 传送门 Sum of Consecutive Prime Numbers Time Limit: 1000MS     Memory Limit: 65536K Description S ...

  6. ACM:POJ 2739 Sum of Consecutive Prime Numbers-素数打表-尺取法

    POJ 2739 Sum of Consecutive Prime Numbers Time Limit:1000MS     Memory Limit:65536KB     64bit IO Fo ...

  7. POJ2739 Sum of Consecutive Prime Numbers 2017-05-31 09:33 47人阅读 评论(0) 收藏

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 25225 ...

  8. Sum of Consecutive Prime Numbers

    Sum of Consecutive Prime Numbers http://poj.org/problem?id=2739 Time Limit: 1000MS   Memory Limit: 6 ...

  9. poj 2739 Sum of Consecutive Prime Numbers 素数 读题 难度:0

    Sum of Consecutive Prime Numbers Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 19697 ...

随机推荐

  1. ui自动化测试,页面方法的使用

    悬浮下拉框 的设置选择 下拉框的选择 显性等待 双击, ActionChains类的方法行动链 提示框 双击,右击 双击用到行动连,提示框用到Alert的类 右击用到的也是行动连 UI自动化测试 #h ...

  2. (数据科学学习手札132)Python+Fabric实现远程服务器连接

    本文示例代码及文件已上传至我的Github仓库https://github.com/CNFeffery/DataScienceStudyNotes 1 简介 日常工作中经常需要通过SSH连接到多台远程 ...

  3. 非寻常方式学习ApacheTomcat架构及10.0.12源码编译

    概述 开启博客分享已近三个月,感谢所有花时间精力和小编一路学习和成长的伙伴们,有你们的支持,我们继续再接再厉 **本人博客网站 **IT小神 www.itxiaoshen.com 定义 Tomcat官 ...

  4. 学习java的第十二天

    一.今日收获(前两天家里有事,博客都忘了发了,唉) 1.通过看哔哩哔哩看黑马程序员的教学视频,学习了java中的数据类型自动转换.强制转换及注意事项三节 2.简单看了看完全学习手册 二.今日问题 1. ...

  5. 逻辑学与Prolog学习笔记

    int a = 3 + 5; 很自然.如果Matrix a, b要加呢?没有运算符重载,a + b是不行的,只能add(a, b). int a = add(3, 5)也行.如果函数名可以用+呢?+( ...

  6. day01互联网架构理论

  7. day27 网络编程

    1.OSI七层协议 1.七层划分为:应用层,表示层.会话层.传输层.网络层.数据链路层.物理层 2.五层划分:应用层.传输层.网络层.数据链路层.物理层 应用层: 表示层: 会话层: 传输层:四层交换 ...

  8. 100个Shell脚本——【脚本3】tomcat启动脚本

    [脚本3]tomcat启动脚本 一.脚本tomcatd.sh #!/bin/bash # chkconfig:2345 64 36 # description: Tomcat start/stop/r ...

  9. java加密方式

    加密,是以某种特殊的算法改变原有的信息数据,使得未授权的用户即使获得了已加密的信息,但因不知解密的方法,仍然无法了解信息的内容.大体上分为双向加密和单向加密,而双向加密又分为对称加密和非对称加密(有些 ...

  10. oracle中注释都是问号?中文显示不出来问题

    本人在工作中需要把开发上的库恢复到自己的虚拟机里面,然而捣鼓了许久建立好数据库之后,在使用建表语句初始化表的时候,发现注释都是????? 然后一脸懵逼不知何解,网上一大堆是说修改环境变量 NLS_LA ...