题意:

      给你一个集合,然后有如下输入,a ,b ,c表示在范围[a,b]里面有至少有c个元素,最后问你整个集合最少多少个元素。

思路:

      和HDU1384一模一样,首先这个题目可以用差分约束来解决,是大于等于所以跑最长路(如果非要跑最短路建-权也可以),说下建图,首先我们把每个区间抽象出来,区间的两个端点之间的元素个数 [a ,b] = c 可以抽象成 点a,和点(b + 1)之间的距离 大于等于c,那么这样就可以把输入建进去了,还有个关键的地方就是题目的隐含条件,一般的查分约束的关键都是在于找隐含条件,这个题目的隐含条件就是相邻的

两个点的元素个数 >= 0 && <= 1,其他的没啥了。


#include<stdio.h>
#include<string.h>
#include<queue> #define N_node 55000
#define N_edge 210000
#define INF 100000000000000 using namespace std; typedef struct
{
int to ,next;
__int64 cost;
}STAR; STAR E[N_edge];
int list[N_node] ,tot;
__int64 s_x[N_node]; void add(int a ,int b ,__int64 c)
{
E[++tot].to = b;
E[tot].cost = c;
E[tot].next = list[a];
list[a] = tot;
} bool spfa(int s ,int n)
{
for(int i = 0 ;i <= n ;i ++)
s_x[i] = -INF;
int mark[N_node] = {0};
int in[N_node] = {0};
s_x[s] = 0;
mark[s] = in[s] = 1;
queue<int>q;
q.push(s);
while(!q.empty())
{
int xin ,tou;
tou = q.front();
q.pop();
mark[tou] = 0;
for(int k = list[tou] ;k ;k = E[k].next)
{
xin = E[k].to;
if(s_x[xin] < s_x[tou] + E[k].cost)
{
s_x[xin] = s_x[tou] + E[k].cost;
if(!mark[xin])
{
mark[xin] = 1;
q.push(xin);
if(++in[xin] > n) return 0;
}
}
}
}
return 1;
} int maxx(int x ,int y)
{
return x > y ? x : y;
}
int minn(int x ,int y)
{
return x < y ? x : y;
} int main ()
{
int n ,a ,b ,i;
__int64 c;
while(~scanf("%d" ,&n))
{
memset(list ,0 ,sizeof(list));
tot = 1;
int Max = 0 ,Min = 100000000;
for(i = 1 ;i <= n ;i ++)
{
scanf("%d %d %I64d" ,&a ,&b ,&c);
b ++;
add(a ,b ,c);
Max = maxx(Max ,b);
Min = minn(Min ,a);
}
for(i = Min ;i <= Max ;i ++)
{
add(i - 1 ,i ,0);
add(i ,i - 1 ,-1);
}
spfa(Min ,Max);
printf("%I64d\n" ,s_x[Max]);
}
return 0;
}

POJ 1201 差分约束(集合最小元素个数)的更多相关文章

  1. poj 1201 差分约束

    http://www.cnblogs.com/wangfang20/p/3196858.html 题意: 求集合Z中至少要包含多少个元素才能是每个区间[ai,bi]中的元素与Z中的元素重合个数为ci. ...

  2. POJ 1201 差分约束+SPFA

    思路: 差分约束,难在建图.(我是不会告诉你我刚学会SPFA的...) 把每个区间的ai–>bi连一条长度为ci的边. k–>k+1连一条长度为0的边. k+1–>k连一条长度为-1 ...

  3. Intervals POJ - 1201 差分约束

    You are given n closed, integer intervals [ai, bi] and n integers c1, ..., cn. Write a program that: ...

  4. poj 1611 求0号结点所在集合的元素个数

    求0号结点所在集合的元素个数 Sample Input 100 42 1 25 10 13 11 12 142 0 12 99 2200 21 55 1 2 3 4 51 00 0Sample Out ...

  5. poj 3159(差分约束经典题)

    题目链接:http://poj.org/problem?id=3159思路:题目意思很简单,都与给定的条件dist[b]-dist[a]<=c,求dist[n]-dist[1]的最大值,显然这是 ...

  6. Intervals poj 1201 差分约束系统

    Intervals Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 22503   Accepted: 8506 Descri ...

  7. poj Layout 差分约束+SPFA

    题目链接:http://poj.org/problem?id=3169 很好的差分约束入门题目,自己刚看时学呢 代码: #include<iostream> #include<cst ...

  8. POJ - 3169 差分约束

    题意:n头牛,按照编号从左到右排列,两头牛可能在一起,接着有一些关系表示第a头牛与第b头牛相隔最多与最少的距离,最后求出第一头牛与最后一头牛的最大距离是多少,如         果最大距离无限大则输出 ...

  9. MT【215】集合中元素个数

    设$M=\{1,2,3\cdots,2010\}$,$A$是$M$的子集且满足条件:当$x\in A$时$15x\notin A$,则$A$中的元素的个数最多是______ 分析:由于$x,15x,( ...

随机推荐

  1. arti车是大幅度发地方大幅度发

    转: arti车是大幅度发地方大幅度发 arti车是大幅度发地方大幅度发 转: arti车是大幅度发地方大幅度发

  2. Elastic App Search 快速构建 ES 应用

    公号:码农充电站pro 主页:https://codeshellme.github.io App Search 是 Elastic 家族中的一个产品,它可以帮助我们(基于 ES)快速高效的构建搜索应用 ...

  3. 剑指 Offer 29. 顺时针打印矩阵 + 蛇形矩阵 + 模拟 + 思维题

    剑指 Offer 29. 顺时针打印矩阵 Offer_29 题目描述: 题解分析: 题目的初衷是将这道题当做一个简单题处理 这道题一开始想的太复杂了,其实可以参考迷宫广度优先搜索的过程,只不过在选定一 ...

  4. POJ-1511(Dijkstra+优先队列优化+向前星)

    Invitation Cards POJ-1511 从这道题我还是发现了很多的问题,首先就是快速输入输出,这里的ios::---这一行必须先放在main函数第一行,也就是输入最开始的前面,否则系统疯狂 ...

  5. Mybatis(一):手写一套持久层框架

    作者 : 潘潘 未来半年,有幸与导师们一起学习交流,趁这个机会,把所学所感记录下来. 「封面图」 自毕业以后,自己先创业后上班,浮沉了近8年,内心着实焦躁,虽一直是走科班路线,但在技术道路上却始终没静 ...

  6. 记一次Drone无法触发构建的问题

    问题 好巧不巧,当你晚上准备上线的时候,在下午临近下班的时候CI&CD工具出问题了,提交代码不能触发构建,不能上线了,Drone平台那边也下班了,正好CICD依赖的公司git仓库也出问题了(就 ...

  7. CVE-2018-2628-WLS Core Components 反序列化

    漏洞参考 https://blog.csdn.net/csacs/article/details/87122472 漏洞概述:在 WebLogic 里,攻击者利用其他rmi绕过weblogic黑名单限 ...

  8. rest framework Request

    要求 如果你正在做基于REST的Web服务的东西......你应该忽略request.POST. -马尔科姆Tredinnick,Django开发组 REST框架的Request类继承了标准HttpR ...

  9. C# 基础 - 堆栈跟踪使用

    使用一:可用于捕获报错时. using System.Diagnostics; ... StackTrace st = new StackTrace(true); string stackIndent ...

  10. PHP配置 2. 日志相关配置

    例如,在disable_functions,定义禁用phpinfo函数, # vim /usr/local/php/etc/php.ini disable_functions=phpinfo,eval ...