题解「2017 山东一轮集训 Day1 / SDWC2018 Day1」Set
题目大意
给出一个长度为 \(n\) 的数组,选出一些数异或之和为 \(s1\),其余数异或之和为 \(s2\),求 \(s1+s2\) 最大时 \(s1\) 的最小值。
思路
你发现如果你设 \(s\) 为所有数的异或和,那么如果 \(s\) 某一位为 \(0\) 就可以拆成\(1\oplus 1\),不同就只能拆成 \(0\oplus 1\),所以我们应该多拆 \(0\) ,这个用线性基实现即可。
\(\texttt{Code}\)
#include <bits/stdc++.h>
using namespace std;
#define Int register int
#define ll long long
#define MAXN 100005
template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');}
int n,tot,b[63];
ll s,s2,a[MAXN],p[63];
void ins (ll x){
for (Int i = 1;i <= tot;++ i)
if (x & (1ll << b[i])){
if (!p[i]){p[i] = x;break;}
else x ^= p[i];
}
}
signed main(){
read (n);
for (Int i = 1;i <= n;++ i) read (a[i]),s ^= a[i];
for (Int i = 62;~i;-- i) if (!(s >> i & 1)) b[++ tot] = i;
for (Int i = 62;~i;-- i) if (s >> i & 1) b[++ tot] = i;
for (Int i = 1;i <= n;++ i) ins (a[i]);
for (Int i = 1;i <= tot;++ i) if (!(s2 & (1ll << b[i]))) s2 ^= p[i];
write (s ^ s2),putchar ('\n');
return 0;
}
题解「2017 山东一轮集训 Day1 / SDWC2018 Day1」Set的更多相关文章
- 题解 「2017 山东一轮集训 Day7」逆序对
题目传送门 Description 给定 $ n, k $,请求出长度为 $ n $ 的逆序对数恰好为 $ k $ 的排列的个数.答案对 $ 10 ^ 9 + 7 $ 取模. 对于一个长度为 $ n ...
- 题解 「2017 山东一轮集训 Day5」苹果树
题目传送门 题目大意 给出一个 \(n\) 个点的图,每个点都有一个权值 \(f_i\) ,如果 \(f_i=-1\) 表示 \(i\) 这个点是坏的.定义一个点是有用的当且仅当它不是坏的,并且它连的 ...
- LOJ 6060「2017 山东一轮集训 Day1 / SDWC2018 Day1」Set(线性基,贪心)
LOJ 6060「2017 山东一轮集训 Day1 / SDWC2018 Day1」Set $ solution: $ 这一题的重点在于优先级问题,我们应该先保证总和最大,然后再保证某一个最小.于是我 ...
- 【LOJ#6066】「2017 山东一轮集训 Day3」第二题(哈希,二分)
[LOJ#6066]「2017 山东一轮集训 Day3」第二题(哈希,二分) 题面 LOJ 题解 要哈希是很显然的,那么就考虑哈希什么... 要找一个东西可以表示一棵树,所以我们找到了括号序列. 那么 ...
- 【LOJ6077】「2017 山东一轮集训 Day7」逆序对 生成函数+组合数+DP
[LOJ6077]「2017 山东一轮集训 Day7」逆序对 题目描述 给定 n,k ,请求出长度为 n的逆序对数恰好为 k 的排列的个数.答案对 109+7 取模. 对于一个长度为 n 的排列 p ...
- Loj #6069. 「2017 山东一轮集训 Day4」塔
Loj #6069. 「2017 山东一轮集训 Day4」塔 题目描述 现在有一条 $ [1, l] $ 的数轴,要在上面造 $ n $ 座塔,每座塔的坐标要两两不同,且为整点. 塔有编号,且每座塔都 ...
- Loj #6073.「2017 山东一轮集训 Day5」距离
Loj #6073.「2017 山东一轮集训 Day5」距离 Description 给定一棵 \(n\) 个点的边带权的树,以及一个排列$ p\(,有\)q $个询问,给定点 \(u, v, k\) ...
- Loj 6068. 「2017 山东一轮集训 Day4」棋盘
Loj 6068. 「2017 山东一轮集训 Day4」棋盘 题目描述 给定一个 $ n \times n $ 的棋盘,棋盘上每个位置要么为空要么为障碍.定义棋盘上两个位置 $ (x, y),(u, ...
- 「2017 山东一轮集训 Day5」苹果树
「2017 山东一轮集训 Day5」苹果树 \(n\leq 40\) 折半搜索+矩阵树定理. 没有想到折半搜索. 首先我们先枚举\(k\)个好点,我们让它们一定没有用的.要满足这个条件就要使它只能和坏 ...
随机推荐
- Ansible部署及配置介绍
原文转自:https://www.cnblogs.com/itzgr/p/10233932.html作者:木二 目录 一 Ansible的安装部署 1.1 PIP方式 1.2 YUM方式 二 Ansi ...
- Redis详解(一)——
Redis详解1 https://www.cnblogs.com/MoYu-zc/p/14985250.html https://www.cnblogs.com/xiaoxiaotank/p/1498 ...
- Onenote实现OCR识别图片
OCR识别推荐两个软件: 1. Tesseract:一个开源的,由谷歌维护的OCR软件. 2. Onenote:微软Office附带或者可以自己独立安装. 3. O ...
- Python - 通过PyYaml库操作YAML文件
PyYaml简单介绍 Python的PyYAML模块是Python的YAML解析器和生成器 它有个版本分水岭,就是5.1 读取YAML5.1之前的读取方法 def read_yaml(self, pa ...
- element后端管理布局
<template> <el-container> <el-header> <Header></Header> <span class ...
- poll?transport=longpoll&connection...烦人的请求c
1.问题描述: 最近使用miniui做了一个后台管理系统,打开浏览器调试时,总发现一堆无关的请求,结构大致是:poll?transport=longpoll&connection.....一直 ...
- weblogic漏洞分析之CVE-2021-2394
weblogic漏洞分析之CVE-2021-2394 简介 Oracle官方发布了2021年7月份安全更新通告,通告中披露了WebLogic组件存在高危漏洞,攻击者可以在未授权的情况下通过IIOP.T ...
- Sentry 监控 - Dashboards 事件数据可视化大屏
系列 1 分钟快速使用 Docker 上手最新版 Sentry-CLI - 创建版本 快速使用 Docker 上手 Sentry-CLI - 30 秒上手 Source Maps Sentry For ...
- 机器学习——最优化问题:拉格朗日乘子法、KKT条件以及对偶问题
1 前言 拉格朗日乘子法(Lagrange Multiplier) 和 KKT(Karush-Kuhn-Tucker) 条件是求解约束优化问题的重要方法,在有等式约束时使用拉格朗日乘子法,在有不等 ...
- HDU1166敌兵布阵(线段树单点更新)
线段树是一种二叉搜索树,与区间树相似,它将一个区间划分成一些单元区间,每个单元区间对应线段树中的一个叶结点. 对于线段树中的每一个非叶子节点[a,b],它的左儿子表示的区间为[a,(a+b ...