Collector配置

collector通过pipeline处理service中启用的数据。pipeline由接收遥测数据的组件构成,包括:

其次还可以通过扩展来为Collector添加功能,但扩展不需要直接访问遥测数据,且不是pipeline的一部分。扩展同样可以在service中启用。

Receivers

receiver定义了数据如何进入OpenTelemetry Collector。必须配置一个或多个receiver,默认不会配置任何receivers。

下面给出了所有可用的receivers的基本例子,更多配置可以参见receiver文档

  receivers:
  opencensus:
  address: "localhost:55678"
   
  zipkin:
  address: "localhost:9411"
   
  jaeger:
  protocols:
  grpc:
  thrift_http:
  thrift_tchannel:
  thrift_compact:
  thrift_binary:
   
  prometheus:
  config:
  scrape_configs:
  - job_name: "caching_cluster"
  scrape_interval: 5s
  static_configs:
  - targets: ["localhost:8889"]

Processors

Processors运行在数据的接收和导出之间。虽然Processors是可选的,但有时候会建议使用Processors。

下面给出了所有可用的Processors的基本例子,更多参见Processors文档

  processors:
  attributes/example:
  actions:
  - key: db.statement
  action: delete
  batch:
  timeout: 5s
  send_batch_size: 1024
  probabilistic_sampler:
  disabled: true
  span:
  name:
  from_attributes: ["db.svc", "operation"]
  separator: "::"
  queued_retry: {}
  tail_sampling:
  policies:
  - name: policy1
  type: rate_limiting
  rate_limiting:
  spans_per_second: 100

Exporters

exporter指定了如何将数据发往一个或多个后端/目标。必须配置一个或多个exporter,默认不会配置任何exporter。

下面给出了所有可用的exporters的基本例子,更多参见exporters文档

  exporters:
  opencensus:
  headers: {"X-test-header": "test-header"}
  compression: "gzip"
  cert_pem_file: "server-ca-public.pem" # optional to enable TLS
  endpoint: "localhost:55678"
  reconnection_delay: 2s
   
  logging:
  loglevel: debug
   
  jaeger_grpc:
  endpoint: "http://localhost:14250"
   
  jaeger_thrift_http:
  headers: {"X-test-header": "test-header"}
  timeout: 5
  endpoint: "http://localhost:14268/api/traces"
   
  zipkin:
  endpoint: "http://localhost:9411/api/v2/spans"
   
  prometheus:
  endpoint: "localhost:8889"
  namespace: "default"

Service

Service部分用于配置OpenTelemetry Collector根据receivers, processors, exporters, 和extensions sections的配置会启用那些特性。service分为两部分:

  • extensions
  • pipelines

extensions包含启用的扩展,如:

  service:
  extensions: [health_check, pprof, zpages]

Pipelines有两类:

  • metrics: 采集和处理metrics数据
  • traces: 采集和处理trace数据

一个pipeline是一组 receivers, processors, 和exporters的集合。必须在service之外定义每个receiver/processor/exporter的配置,然后将其包含到pipeline中。

注:每个receiver/processor/exporter都可以用到多个pipeline中。当多个pipeline引用processor(s)时,每个pipeline都会获得该processor(s)的一个实例,这与多个pipeline中引用receiver(s)/exporter(s)的情况不同(所有pipelines仅能获得receiver/exporter的一个实例)。

下面给出了一个pipeline配置的例子,更多可以参见pipeline文档

  service:
  pipelines:
  metrics:
  receivers: [opencensus, prometheus]
  exporters: [opencensus, prometheus]
  traces:
  receivers: [opencensus, jaeger]
  processors: [batch, queued_retry]
  exporters: [opencensus, zipkin]

Extensions

Extensions可以用于监控OpenTelemetry Collector的健康状态。Extensions是可选的,默认不会配置任何Extensions。

下面给出了所有可用的extensions的基本例子,更多参见extensions文档

  extensions:
  health_check: {}
  pprof: {}
  zpages: {}

使用环境变量

collector配置中可以使用环境变量,如:

  processors:
  attributes/example:
  actions:
  - key: "$DB_KEY"
  action: "$OPERATION"

Collector的使用

下面使用官方demo来体验一下Collector的功能

本例展示如何从OpenTelemetry-Go SDK 中导出trace和metric数据,并将其导入OpenTelemetry Collector,最后通过Collector将trace数据传递给Jaeger,将metric数据传递给Prometheus。完整的流程为:

  -----> Jaeger (trace)
  App + SDK ---> OpenTelemtry Collector ---|
  -----> Prometheus (metrics)

部署到Kubernetes

k8s目录中包含本demo所需要的所有部署文件。为了简化方便,官方将部署目录集成到了一个makefile文件中。在必要时可以手动执行Makefile中的命令。

部署Prometheus operator

  git clone https://github.com/coreos/kube-prometheus.git
  cd kube-prometheus
  kubectl create -f manifests/setup
   
  # wait for namespaces and CRDs to become available, then
  kubectl create -f manifests/

可以使用如下方式清理环境:

  kubectl delete --ignore-not-found=true -f manifests/ -f manifests/setup

等待prometheus所有组件变为running状态

  # kubectl get pod -n monitoring
  NAME READY STATUS RESTARTS AGE
  alertmanager-main-0 2/2 Running 0 16m
  alertmanager-main-1 2/2 Running 0 16m
  alertmanager-main-2 2/2 Running 0 16m
  grafana-7f567cccfc-4pmhq 1/1 Running 0 16m
  kube-state-metrics-85cb9cfd7c-x6kq6 3/3 Running 0 16m
  node-exporter-c4svg 2/2 Running 0 16m
  node-exporter-n6tnv 2/2 Running 0 16m
  prometheus-adapter-557648f58c-vmzr8 1/1 Running 0 16m
  prometheus-k8s-0 3/3 Running 0 16m
  prometheus-k8s-1 3/3 Running 1 16m
  prometheus-operator-5b469f4f66-qx2jc 2/2 Running 0 16m

使用Makefile

下面使用makefile部署Jaeger,Prometheus monitor和Collector,依次执行如下命令即可:

  # Create the namespace
  make namespace-k8s
   
  # Deploy Jaeger operator
  make jaeger-operator-k8s
   
  # After the operator is deployed, create the Jaeger instance
  make jaeger-k8s
   
  # Then the Prometheus instance. Ensure you have enabled a Prometheus operator
  # before executing (see above).
  make prometheus-k8s
   
  # Finally, deploy the OpenTelemetry Collector
  make otel-collector-k8s

等待observability命名空间下的Jaeger和Collector的Pod变为running状态

  # kubectl get pod -n observability
  NAME READY STATUS RESTARTS AGE
  jaeger-7b868df4d6-w4tk8 1/1 Running 0 97s
  jaeger-operator-9b4b7bb48-q6k59 1/1 Running 0 110s
  otel-collector-7cfdcb7658-ttc8j 1/1 Running 0 14s

可以使用make clean-k8s命令来清理环境,但该命令不会移除命名空间,需要手动删除命名空间:

  kubectl delete namespaces observability

配置OpenTelemetry Collector

完成上述步骤之后,就部署好了所需要的所有资源。下面看一下Collector的配置文件

为了使应用发送数据到OpenTelemetry Collector,首先需要配置otlp类型的receiver,它使用gRpc进行通信:

  ...
  otel-collector-config: |
  receivers:
  # Make sure to add the otlp receiver.
  # This will open up the receiver on port 55680.
  otlp:
  endpoint: 0.0.0.0:55680
  processors:
  ...

上述配置会在Collector侧创建receiver,并打开55680端口,用于接收trace。剩下的配置都比较标准,唯一需要注意的是需要创建Jaeger和Prometheus exporters:

  ...
  exporters:
  jaeger_grpc:
  endpoint: "jaeger-collector.observability.svc.cluster.local:14250"
   
  prometheus:
  endpoint: 0.0.0.0:8889
  namespace: "testapp"
  ...
OpenTelemetry Collector service

配置中另外一个值得注意的是用于访问OpenTelemetry Collector的NodePort

  apiVersion: v1
  kind: Service
  metadata:
  ...
  spec:
  ports:
  - name: otlp # Default endpoint for otlp receiver.
  port: 55680
  protocol: TCP
  targetPort: 55680
  nodePort: 30080
  - name: metrics # Endpoint for metrics from our app.
  port: 8889
  protocol: TCP
  targetPort: 8889
  selector:
  component: otel-collector
  type:
  NodePort

该service 会将用于访问otlp receiver的30080端口与cluster node的55680端口进行绑定,这样就可以通过静态地址<node-ip>:30080来访问Collector。

运行代码

main.go文件中可以看到完整的示例代码。要运行该代码,需要满足Go的版本>=1.13

  # go run main.go
  2020/10/20 09:19:17 Waiting for connection...
  2020/10/20 09:19:17 Doing really hard work (1 / 10)
  2020/10/20 09:19:18 Doing really hard work (2 / 10)
  2020/10/20 09:19:19 Doing really hard work (3 / 10)
  2020/10/20 09:19:20 Doing really hard work (4 / 10)
  2020/10/20 09:19:21 Doing really hard work (5 / 10)
  2020/10/20 09:19:22 Doing really hard work (6 / 10)
  2020/10/20 09:19:23 Doing really hard work (7 / 10)
  2020/10/20 09:19:24 Doing really hard work (8 / 10)
  2020/10/20 09:19:25 Doing really hard work (9 / 10)
  2020/10/20 09:19:26 Doing really hard work (10 / 10)
  2020/10/20 09:19:27 Done!
  2020/10/20 09:19:27 exporter stopped

该示例模拟了一个正在运行应用程序,计算10秒之后结束。

查看采集到的数据

运行go run main.go的数据流如下:

Jaeger UI

Jaeger上查询trace内容如下:

Prometheus

运行main.go结束之后,可以在Prometheus中查看该metric。其对应的Prometheus target为observability/otel-collector/0

Prometheus上查询metric内容如下:

FAQ:

  • 在运行完部署命令之后,发现Prometheus没有注册如http://10.244.1.33:8889/metrics这样的target。可以查看Prometheus pod的日志,可能是因为Prometheus没有对应的role权限导致的,将Prometheus的clusterrole修改为如下内容即可:

      kind: ClusterRole
      apiVersion: rbac.authorization.k8s.io/v1
      metadata:
      name: prometheus-k8s
      namespace: monitoring
      rules:
      - apiGroups: [""]
      resources: ["services","pods","endpoints","nodes/metrics"]
      verbs: ["get", "watch", "list"]
      - apiGroups: ["extensions"]
      resources: ["ingresses"]
      verbs: ["get", "watch", "list"]
      - nonResourceURLs: ["/metrics"]
      verbs: ["get", "watch", "list"]
  • 在运行"go run main.go"时可能会遇到rpc error: code = Internal desc = grpc: error unmarshalling request: unexpected EOF这样的错误,通常因为client和server使用的proto不一致导致的。client端(即main.go)使用的proto文件目录为go.opentelemetry.io/otel/exporters/otlp/internal/opentelemetry-proto-gen,而collector使用proto文件目录为go.opentelemetry.io/collector/internal/data/opentelemetry-proto-gen,需要比较这两个目录下的文件是否一致。如果不一致,则需要根据collector的版本为main.go生成对应的proto文件(或者可以直接更换collector的镜像,注意使用的otel/opentelemetry-collector的镜像版本)。在collector的proto目录下可以看到对应的注释和使用的proto版本,如下:

    collector使用的proto git库为opentelemetry-proto。clone该库,切换到对应版本后,执行make gen-go即可生成对应的文件。

    Component Maturity
    Binary Protobuf Encoding  
    collector/metrics/* Alpha
    collector/trace/* Stable
    common/* Stable
    metrics/* Alpha
    resource/* Stable
    trace/trace.proto Stable
    trace/trace_config.proto Alpha
    JSON encoding  
    All messages Alpha

本文来自博客园,作者:charlieroro,转载请注明原文链接:https://www.cnblogs.com/charlieroro/p/13883602.html

Collector的配置和使用的更多相关文章

  1. 在 vSphere 5.x/6.0 中配置 Network Dump Collector 服务 (2002954)

    vmware KB: https://kb.vmware.com/s/article/2002954?lang=zh_CN 重点配置命令: 使用 vSphere Client 连接到 vCenter ...

  2. skywalking6.0.0安装配置(windows),以mysql作为储存。

    下载skywalking6.0.0http://skywalking.apache.org/downloads/ 下载jdk8https://www.oracle.com/technetwork/ja ...

  3. linux 配置 skywalking

    linux安装elasticsearch 一.检测是否已经安装的elasticsearch ps -aux|grep elasticsearch 二.下载elasticsearch (1)下载网站为: ...

  4. JMeter--PerfMon Metrics Collector监控内存及CPU

    1.需要准备的软件及插件 ServerAgent-2.2.1.zip JMeterPlugins-Standard-1.3.1.zip 2.jmeter上JMeterPlugins-Standard- ...

  5. 【翻译自mos文章】Oracle GoldenGate 怎么在源头的传输进程和目的端的server/collector进程之间分配 port?

    Oracle GoldenGate 怎么在源头的传输进程和目的端的server/collector进程之间分配 port? 来源于: How Does GoldenGate Allocates Por ...

  6. Jmeter接口测试【1】_安装配置教程

    一.安装Java环境 1.下载JDK JDK 可以到官网选择windows系统版本(32位/64位)下载http://www.oracle.com/technetwork/java/javase/do ...

  7. 【转】Flume日志收集

    from:http://www.cnblogs.com/oubo/archive/2012/05/25/2517751.html Flume日志收集   一.Flume介绍 Flume是一个分布式.可 ...

  8. hadoop-mapreduce在maptask执行分析

    MapTask执行通过执行.run方法: 1.生成TaskAttemptContextImpl实例,此实例中的Configuration就是job本身. 2.得到用户定义的Mapper实现类,也就是m ...

  9. 整体认识flume:Flume介绍、分布式安装、常见问题及解决方案

    问题导读 1.什么是flume? 2.flume包含哪些组件? 3.Flume在读取utf-8格式的文件时会出现解析不了时间戳,该如何解决? Flume是一个分布式.可靠.和高可用的海量日志采集.聚合 ...

  10. jmeter监控服务资源

    转:http://www.cnblogs.com/chengtch/p/6079262.html  1.下载需要的jmeter插件 如图上面两个是jmeter插件,可以再下面的链接中下载: https ...

随机推荐

  1. Android JIT

    Android JIT(Just-In-Time)编译是一种动态编译技术,在运行时将字节码转换为机器码,以提高应用程序的执行效率.与静态编译不同,JIT编译是在应用程序运行时进行的,因此可以在程序执行 ...

  2. iOS中异常处理机制使用小结

    在iOS开发中经常会由于数组越界,添加数据为空,通信或者文件错误,内存溢出导致程序终端运行而引入异常处理机制.常用的处理方式是try catch机制.不过有几个专业术语需要解释,异常句柄.异常处理域断 ...

  3. 基于 Nginx 的大型互联网集群架构与实战方案

    1. Nginx 负载均衡基础配置 首先,搭建一个基础的 Nginx 负载均衡器,用于将流量分发到多个后端服务器上. 步骤 1.1:安装 Nginx 在每台要作为负载均衡器的服务器上,安装 Nginx ...

  4. 3. 王道OS-操作系统的运行机制,中断和异常

    1. 高级语言- 编译 - 机器指令 (二进制) 2. 内核态和用户态 :刚开机的时候CPU是内核态,当用户启动某个程序的时候CPU是用户态,如果遇到危险,操作系统会夺回CPU的控制权成为内核态,当危 ...

  5. 5.flask 源码解析:请求

    目录 一.flask 源码解析:请求 1.1 简介 1.2 请求 Flask 源码分析完整教程目录:https://www.cnblogs.com/nickchen121/p/14763457.htm ...

  6. 盘点.NET支持的 处理器架构

    在一个会议上,中国招投标协会的技术负责人居然当着很多领导的面说.NET不能在国产服务器上运行,可以说这个技术负责人非蠢即坏.国产服务器的处理器架构主要包括x86.ARM.LoongArch.risc- ...

  7. 安装nvm管理node版本(npm、yarn)

    安装nvm管理node版本(npm.yarn) 一.下载安装nvm nvm网址:https://nvm.uihtm.com/ 1.点击下载链接下载nvm 2.将下载的压缩包解压,解压后双击安装包,然后 ...

  8. schedule-执行周期性任务

    模块介绍 该模块主要用于python的任务调度,使用简便友好的python语法定期运行python函数或者一些其他的调用对象,这个模块就类似于windows的任务计划和linux的crontab,都是 ...

  9. JavaScript对象获取属性的方法(.和[]方式)

    js对象获取属性有两种方法:1.通过.的方式  2. 通过[]方式 // 通过.方式获取属性值,key是静态的 var aa = {name: "zhang", age: 18}; ...

  10. 狂神说-Docker基础-学习笔记-07 容器数据卷

    狂神说-Docker基础-学习笔记-07 容器数据卷 视频地址:https://www.bilibili.com/video/BV1og4y1q7M4?p=21 什么是容器数据卷 运行时数据都在容器中 ...