#单位根反演,二项式定理#LOJ 6485 LJJ 学二项式定理
题目
\]
\(n\leq 10^{18},S,a\leq 10^8\)
分析
前面这一坨看起来就像是二项式定理,考虑如何把后面这一坨弄掉
\]
由于\([i\bmod 4==j]\)等同于\([4|(i-j)]\)
\]
把有关\(j\)的项挪到前面去,就是
\]
\]
直接预处理单位根就可以了
代码
#include <cstdio>
#include <cctype>
#define rr register
using namespace std;
const int mod=998244353; int pw[4];
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void print(int ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
inline signed ksm(int x,int y){
rr int ans=1;
for (;y;y>>=1,x=1ll*x*x%mod)
if (y&1) ans=1ll*ans*x%mod;
return ans;
}
inline signed mo(int x,int y){return x+y>=mod?x+y-mod:x+y;}
signed main(){
pw[0]=1,pw[1]=ksm(3,(mod-1)/4);
for (rr int i=2;i<4;++i)
pw[i]=1ll*pw[i-1]*pw[1]%mod;
rr int inv4=ksm(4,mod-2);
for (rr int T=iut();T;--T){
rr long long n; scanf("%lld",&n);
n%=mod-1; rr int m=iut(),ans=0;
for (rr int i=0;i<4;++i){
rr int x=iut(),sum=0;
for (rr int j=0;j<4;++j)
sum=mo(sum,1ll*pw[(4-i*j%4)%4]*ksm(1ll*m*pw[j]%mod+1,n)%mod);
ans=mo(ans,1ll*sum*x%mod);
}
print(1ll*ans*inv4%mod),putchar(10);
}
return 0;
}
#单位根反演,二项式定理#LOJ 6485 LJJ 学二项式定理的更多相关文章
- loj 6485 LJJ学二项式定理 —— 单位根反演
题目:https://loj.ac/problem/6485 先把 \( a_{i mod 4} \) 处理掉,其实就是 \( \sum\limits_{i=0}^{3} a_{i} \sum\lim ...
- loj#6485. LJJ 学二项式定理(单位根反演)
题面 传送门 题解 首先你要知道一个叫做单位根反演的东西 \[{1\over k}\sum_{i=0}^{k-1}\omega^{in}_k=[k|n]\] 直接用等比数列求和就可以证明了 而且在模\ ...
- [LOJ 6485]LJJ学二项式定理(单位根反演)
也许更好的阅读体验 \(\mathcal{Description}\) 原题链接 \(T\)组询问,每次给\(n,s,a_0,a_1,a_2,a_3\)求 \(\begin{aligned}\left ...
- loj #6485. LJJ 学二项式定理 (模板qwq)
$ \color{#0066ff}{ 题目描述 }$ LJJ 学完了二项式定理,发现这太简单了,于是他将二项式定理等号右边的式子修改了一下,代入了一定的值,并算出了答案. 但人口算毕竟会失误,他请来了 ...
- LOJ #6485 LJJ 学二项式定理
QwQ LOJ #6485 题意 求题面中那个算式 题解 墙上暴利 设$ f(x)=(sx+1)^n$ 假设求出了生成函数$ f$的各项系数显然可以算出答案 因为模$ 4$的缘故只要对于每个余数算出次 ...
- LOJ 6485 LJJ 学二项式定理——单位根反演
题目:https://loj.ac/problem/6485 \( \sum\limits_{k=0}^{3}\sum\limits_{i=0}^{n}C_{n}^{i}s^{i}a_{k}[4|(i ...
- loj #6485. LJJ 学二项式定理 单位根反演
新学的黑科技,感觉好nb ~ #include <bits/stdc++.h> #define ll long long #define setIO(s) freopen(s". ...
- LOJ 6485 LJJ学多项式
前言 蒟蒻代码惨遭卡常,根本跑不过 前置芝士--单位根反演 单位根有这样的性质: \[ \frac{1}{n}\sum_{i=0}^{n-1}\omega_{n}^{ki}=\left[n|k\rig ...
- 【LOJ#6485】LJJ 学二项式定理(单位根反演)
[LOJ#6485]LJJ 学二项式定理(单位根反演) 题面 LOJ 题解 显然对于\(a0,a1,a2,a3\)分开算答案. 这里以\(a0\)为例 \[\begin{aligned} Ans&am ...
- LOJ6485 LJJ 学二项式定理 解题报告
LJJ 学二项式定理 题意 \(T\)组数据,每组给定\(n,s,a_0,a_1,a_2,a_3\),求 \[ \sum_{i=0}^n \binom{n}{i}s^ia_{i\bmod 4} \] ...
随机推荐
- HTML学习---day01
1.head标签 <!DOCTYPE html> <!--文档声明H5 html--> <html lang="en"> <head> ...
- Vue3学习(十九) - TreeSelect 树选择
写在前面 我知道自己现在的状态很不好,以为放个假能好好放松下心情,结果昨晚做梦还在工作,调试代码,和领导汇报工作. 天呐,明明是在放假,可大脑还在考虑工作的事,我的天那,这是怎么了? Vue页面参数传 ...
- 基于javaweb的服装租赁网站
演示 技术+环境+工具 jdk8+maven.3.2.1+mysql5.7+idea+navicat+spring+springmvc+mybatis+bootstrap+jquery+ajax
- 【LeetCode递归】括号生成,使用dfs
括号匹配 数字 n 代表生成括号的对数,请你设计一个函数,用于能够生成所有可能的并且 有效的 括号组合. 示例 1: 输入:n = 3 输出:["((()))","(() ...
- macOS通过ssh使用PEM登录
在win上面可以使用XSHELL来登录类似于亚马逊这样的安全服务器,在mac上面就可以使用系统自带的命令工具来连接 使用命令 ssh -i key.pem [server] 如下: ssh -i ke ...
- 【应用服务 App Service】App Service For Windows 如何挂载Storage Account File Share 示例
问题描述 很早之前,介绍了在 App Service for Linux中挂载 Storage Account共享文件,当时Windows无法实现这个功能.而现在,App Service For Wi ...
- redis迁移同步工具-redis-shake
官方文档: https://github.com/alibaba/RedisShake/wiki/快速开始:数据迁移 下载: https://github.com/alibaba/RedisShake ...
- 3、dubbo核心用法
https://dubbo.apache.org/zh/docs/v2.7/user/examples/preflight-check/ 1.启动时检查 在启动时检查依赖的服务是否可用 Dubbo 缺 ...
- Android 关于Dialog在全屏弹出会显示状态栏和导航栏的问题解决
项目的奇葩需求,需要弹出Dialog不要显示状态栏和导航栏,记录一下解决方法 原文地址:Android 关于Dialog在全屏弹出会显示状态栏和导航栏的问题解决 Stars-one的杂货小窝 说明 A ...
- Grails的数据库相关开发
1.开发domain和service 在出来的输入框里输入domain的名字,可以包括包名. 这里我输入test.domain.House,点finish 创建了两个groovy文件,一个当然是tes ...