这道题最开始我用记搜写的,然后WA了一些点,后来看了半天才发现是数组开小了,原来他给了两个数据范围,一个是60%数据的数据范围,另一个是100%数据的数据范围。我没仔细看,没看见后面那行,把60%数据当成本题数据范围了....自然WA了(不过有点好奇为什么不是RE,但是不重要,这种情况不罕见)

然后,增大数组后WA的点就变成TLE了,80分的TLE。然后我用上了cincout加速并且化递归为递推,用正儿八经的DP代替了记搜,过了。

但是,我意识到我提交代码时默认勾选了O2选项,按往常的习惯,我吸口氧能过的题绝对不再花时间。但这道题鬼使神差的我试了试不开O2,结果让我大跌眼镜直接TLE了四个点只有60分...我突然不再那般不求甚解了,得认真些才是呀,于是我打开了题解,想知道自己为什么TLE了以及正解应该怎么优化。(直到那时我还以为这是一道卡常题所谓正解也无非是优化了常数的做法)但是,看到题解后瞬间意识到自己O(n^2)的做法在这个2*10^5数据范围的题目中过不去简直太正常了,我差的不是常数优化,而是根本性的优化。然后我接触到了好多新的优化方法,优先队列、单调队列、线段树、分块。我随后学习了优先队列和单调队列的思想,然后意识到用单调队列来优化我这道题是非常之自然的做法,此前也隐约想到了这种优化但是考虑到下标会在优化过程中丢失然后就不知道该怎么处理了所以没这么做。然而题解仿佛一语点醒梦中人,直接用结构体当队列节点不就行了,把下标和数据绑死在一起,下标本身也存起来而不是依赖其序号而确定就可以消灭一个我此前以为优先队列和单调队列存在的缺点——下标丢失。所以我此前以为的缺点其实根本不算一回事。

最后我感悟到单调队列的思想以及那个用结构体的小tips之后手写了起来,写的不快,但最终写成了,这个过程便让我彻底理解了单调队列,以后就完全会了这种手段了。

顺便还意识到原来deque是可以用迭代器访问其中间元素的,此前我被某些垃圾博客忽悠以为这东西不能访问内部来着,所以此前一直用vector代替deque,现在好了,直到deque可以用并且前端插入的效率远快于vector,以后的各种新队列都可以用deque来实现喽,很方便。

最后,发现这个做法的提升不是一点半点,原本的算法2s的时限都超出了,新代码直接三十多ms过大数据,并且取消掉cincout优化后仍可以50多毫秒过大数据,开了O2后甚至十几ms就能过大数据。

看来读入优化等常数优化的效果果然远小于此类根本性的优化,以后要先分析自己的时间复杂度,发现有明显问题是优先想彻底性的优化,然后再考虑读入优化尾递归等小优化,别上来就读入优化。长期用常数优化+O2骗过洛谷是会有很多坏处的!今天要不是我多想了想,这些知识就错过了!

Code

#include <iostream>
#include <deque>
using namespace std;
struct node
{
int index,num;
node(){}
node(int i,int n){index=i;num=n;}
};
deque<node> q;
int n,l,r,a[400000+5],ans=-99999999,dp[400000+5];
signed main()
{
ios::sync_with_stdio(false);
cin.tie(0);
cin>>n>>l>>r;
for(int i=0;i<=n;i++)cin>>a[i];
for(int i=1;i<l;i++)dp[i]=-99999999;
for(int i=l;i<=n+r;i++)
{
while(!q.empty()&&q.front().index<max(0,i-r))q.pop_front();//出队是全自动的,只要设定好新的窗口左端
int k=min(i-l,n);//单调队列处理滑动窗口问题,入队时只需要考虑新纳入队列考虑范围的那些未入队节点如何入队,有时每轮循环中只需要考虑一个节点的入队
while(!q.empty()&&q.back().num<dp[k])q.pop_back();
q.push_back(node(k,dp[k]));
dp[i]=a[i]+q.front().num;
}
for(int i=n+1;i<=n+r;i++)ans=max(ans,dp[i]);
cout<<ans<<endl;
return 0;
}

P1725-DP【绿】的更多相关文章

  1. 「疫期集训day4」硝烟

    那真是一阵恐怖的炮击(that boomed booms),响亮的炮音(that noise),滚滚的硝烟(that smoke),熊熊的火焰在围绕着我们前进...小心前进(go and be car ...

  2. Luogu【P1725】琪露诺(单调队列,DP)

    本文是笔者第二篇解题报告.从现在开始,会将练的一些题发到博客上并归类到"解题报告"标签中. 琪露诺是这样一道题 这道题可以用纯DP做,但是据说会超时.(为什么?看起来过河这题比它数 ...

  3. 洛谷P1725琪露诺(单调队列优化dp)

    P1725 琪露诺 题目描述 在幻想乡,琪露诺是以笨蛋闻名的冰之妖精.某一天,琪露诺又在玩速冻青蛙,就是用冰把青蛙瞬间冻起来.但是这只青蛙比以往的要聪明许多,在琪露诺来之前就已经跑到了河的对岸.于是琪 ...

  4. 洛谷p1725 露琪诺 单调队列优化的DP

    #include <iostream> #include <cstdio> #include <cstring> using namespace std; int ...

  5. 洛谷P1725 琪露诺 (单调队列/堆优化DP)

    显然的DP题..... 对于位置i,它由i-r~i-l的位置转移过来,容易得到方程 dp[i]=dp[i]+max(dp[i−r],...,dp[i−l]). 第一种:n2的暴力,只能拿部分分. 1 ...

  6. 【BZOJ-1260】涂色paint 区间DP

    1260: [CQOI2007]涂色paint Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 1147  Solved: 698[Submit][Sta ...

  7. hdu4939 Stupid Tower Defense (DP)

    2014多校7 第二水的题 4939 Stupid Tower Defense Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 131 ...

  8. 洛谷P2014 选课 (树形dp)

    10月1日更新.题目:在大学里每个学生,为了达到一定的学分,必须从很多课程里选择一些课程来学习,在课程里有些课程必须在某些课程之前学习,如高等数学总是在其它课程之前学习.现在有N门功课,每门课有个学分 ...

  9. 【DP】BZOJ 1260: [CQOI2007]涂色paint

    1260: [CQOI2007]涂色paint Time Limit: 30 Sec  Memory Limit: 64 MBSubmit: 893  Solved: 540[Submit][Stat ...

  10. 周赛C题 LightOJ 1047 (DP)

    C - C Time Limit:500MS     Memory Limit:32768KB     64bit IO Format:%lld & %llu   Description Th ...

随机推荐

  1. AtomicArray

    AtomicInteger ai = new AtomicInteger(1); //1.获取值 System.out.println("ai.get = "+ai.get()); ...

  2. zookeeper JavaApi 创建节点

    import org.apache.curator.RetryPolicy; import org.apache.curator.framework.CuratorFramework; import ...

  3. 微调baichuan2-7b遇到的显存坑

    问题描述: 微调baichuan2-7b模型,验证一轮后继续训练第一个iteration显存大幅增加 项目链接: https://github.com/wp931120/baichuan_sft_lo ...

  4. 【笔记】负载均衡Robbin之不同服务使用不同的策略

    裂开裂开,搞这么久忘记导入依赖 妈卖批 又不报错 还能让我玩 我以为全部导入了. 话不多说,开始演示. 介绍 给不同的服务 配置 不同的 负载均衡策略 这里使用 用户模块 进行访问其它两个模块的con ...

  5. 使用gradle的方式进行Springboot3的web开发(微服务版)

    简要: 最近看了很多的Springboot3的项目,但是发现很多都是用maven来进行版本管理的,很少有用gradle来管理的,通过网上查找资料,看视频,终于自己写一个gradle管理的Springb ...

  6. 听说生鲜领军企业k8s集群都上云了,鱼会飞了?

    在这个中秋都和国庆在一起的双节里,我们的小明还在辛辛苦苦的找工作,听说他经历了一段"难忘"的面试. 小明面对着面试官的"层层拷问",游刃有余的化解了这些难题. ...

  7. 从相识到相惜:Redis与计算存储分离四部曲

    摘要:协议兼容问题.性能问题.数据备份问题.数据容量问题--这些都是数据库在使用过程中必然会遇见的问题.就好比选择结婚对象,你需要去对比不同的方面,最后选出最好的.最合适的. 近期全国两会正在轰轰烈烈 ...

  8. 详解SQL优化必备:并行执行框架和执行计划

    摘要:在关系型数据库中,优化器是数据库的核心组件之一,由于一些列因素都会影响语句的执行,优化器综合权衡各个因素,在众多的执行计划中选择认为是最佳的执行计划. 本文分享自华为云社区<华为云Gaus ...

  9. 如何使用Tomcat实现WebSocket即时通讯服务服务端

    摘要:HTTP协议是"请求-响应"模式,浏览器必须先发请求给服务器,服务器才会响应该请求.即服务器不会主动发送数据给浏览器. 本文分享自华为云社区<Tomcat支持WebSo ...

  10. 带你了解AKG正反向算子注册+关联流程

    摘要:简要介绍一下akg正反向算子的注册和关联流程. 本文分享自华为云社区<AKG正反向算子注册+关联>,作者:木子_007 . 一.环境 硬件:eulerosv2r8.aarch64 m ...