[OI] 珂朵莉树
对于一个序列,它有较多重复元素,并且题目需要维护区间修改,维护区间信息,维护整块值域信息的,那么就可以考虑珂朵莉树解决.
主要思想
珂朵莉树将全部相同的颜色块压缩为一组,如对于下述序列:
1 1 1 2 3 4 4 4 4
珂朵莉树铺平后即可以变为这样:
{1,3,1} {4,4,2} {5,5,3} {6,9,4}
其中的三元组,每一个三元组描述了一个区间,第一个数表示区间左端点,第二个数表示区间右端点,第三个点表示区间的值.
这样做可以降低区间操作的均摊复杂度,从而在部分数据下表现出较高的效率.
珂朵莉树内部使用 set 实现插入,查找与删除. 对于插入操作,一般来说区间修改操作复杂度是最优的,仅需要分裂并删除部分旁边区块,再整段插入即可,其他的插入操作思想与分块大同小异.
删除操作则是先寻找后分裂,并直接删除即可.
分裂操作的实质就是将几个段分成多个段,先删除原节点,再插入子区间节点.
主要操作
珂朵莉树的大部分操作与分块类似,只不过拥有特殊的块长和性质.
分裂
目标:分裂 \(x\) 所在的区间,返回左区间的首迭代器
这里要注意的是,如果你在其他操作中用到了分裂,一定要先获取右节点迭代器再获取左节点迭代器,否则可能会出现左区间在右区间修改时被修改,导致左迭代器失效 RE 的问题.
对于分裂函数内部,请保证在 Split 之前要有值,lower_bound 对空容器查找会 RE.
auto split(int x){
auto it=odt.lower_bound({x,0,0});
if(it!=odt.end() and it->l==x) return it;
it--;
node u=*it;
odt.erase(it);
odt.insert({u.l,x-1,u.v});
return odt.insert({x,u.r,u.v}).first;
}
铺平(区间修改)
void assign(int l,int r,int v){
auto itr=split(r+1),itl=split(l);
odt.erase(itl,itr);
odt.insert({l,r,v});
}
其他操作直接用迭代器暴力扫就行了,基本都一样,这里用查找排名来做例子.
查询排名
目标:查询 \([l,r]\) 内排名为 \(x\) 的数.
思路:爆扫,统计 \(cnt\)
int rank(int l,int r,int x){
auto itr=split(r+1),itl=split(l);
struct rank{
int v,cnt;
bool operator <(const rank &A)const{
return v<A.v;
}
};
vector<rank>v;
for(auto it=itl;it!=itr;++it){
v.push_back({it->v,it->r-it->l+1});
}
sort(v.begin(),v.end());
int i;for(i=0;i<=(int)v.size()-1;++i){
if(v[i].cnt<x){
x-=v[i].cnt;
}
else{
break;
}
}
return v[i].v;
}
CF896C Willem, Chtholly and Seniorious
#include<bits/stdc++.h>
using namespace std;
#define int long long
int n;
int power(int n,int k,int p){
int ans=1,base=n;
while(k){
if(k&1){
ans=ans%p*base%p;
}
base=base%p*base%p;
k>>=1;
}
return ans;
}
class odt{
private:
struct node{
int l,r;
mutable int v;
bool operator <(const node &A)const{
return l<A.l;
}
};
set<node>odt;
public:
set<node>&self(){
return odt;
}
auto split(int x){
auto it=odt.lower_bound({x,0,0});
if(it!=odt.end() and it->l==x) return it;
it--;
node u=*it;
odt.erase(it);
odt.insert({u.l,x-1,u.v});
return odt.insert({x,u.r,u.v}).first;
}
void assign(int l,int r,int v){
auto itr=split(r+1),itl=split(l);
odt.erase(itl,itr);
odt.insert({l,r,v});
}
void add(int l,int r,int v){
auto itr=split(r+1),itl=split(l);
for(auto it=itl;it!=itr;++it){
it->v+=v;
}
}
int rank(int l,int r,int x){
auto itr=split(r+1),itl=split(l);
struct rank{
int v,cnt;
bool operator <(const rank &A)const{
return v<A.v;
}
};
vector<rank>v;
for(auto it=itl;it!=itr;++it){
v.push_back({it->v,it->r-it->l+1});
}
sort(v.begin(),v.end());
int i;for(i=0;i<=(int)v.size()-1;++i){
if(v[i].cnt<x){
x-=v[i].cnt;
}
else{
break;
}
}
return v[i].v;
}
int pow(int l,int r,int x,int y){
auto itr=split(r+1),itl=split(l);
int ans=0;
for(auto it=itl;it!=itr;++it){
ans=(ans+(it->r-it->l+1)%y*power(it->v,x,y))%y;
}
return ans;
}
};
odt tree;
int m,seed,vmax;
int Rand(){
int ret=seed;
seed=(seed*7+13)%1000000007;
return ret;
}
int a[100001];
signed main(){
cin>>n>>m>>seed>>vmax;
for(int i=1;i<=n;++i){
a[i]=Rand()%vmax+1;
tree.self().insert({i,i,a[i]});
}
for(int i=1;i<=m;++i){
int op=Rand()%4+1,l=Rand()%n+1,r=Rand()%n+1;
if(l>r) swap(l,r);
if(op==1){
int x=Rand()%vmax+1;
tree.add(l,r,x);
}
if(op==2){
int x=Rand()%vmax+1;
tree.assign(l,r,x);
}
if(op==3){
int x=Rand()%(r-l+1)+1;
cout<<tree.rank(l,r,x)<<endl;
}
if(op==4){
int x=Rand()%vmax+1,y=Rand()%vmax+1;
cout<<tree.pow(l,r,x,y)<<endl;
}
}
}
[OI] 珂朵莉树的更多相关文章
- 洛谷AT2342 Train Service Planning(思维,动态规划,珂朵莉树)
洛谷题目传送门 神仙思维题还是要写点东西才好. 建立数学模型 这种很抽象的东西没有式子描述一下显然是下不了手的. 因为任何位置都以\(k\)为周期,所以我们只用关心一个周期,也就是以下数都在膜\(k\ ...
- [转]我的数据结构不可能这么可爱!——珂朵莉树(ODT)详解
参考资料: Chtholly Tree (珂朵莉树) (应某毒瘤要求,删除链接,需要者自行去Bilibili搜索) 毒瘤数据结构之珂朵莉树 在全是珂学家的珂谷,你却不知道珂朵莉树?来跟诗乃一起学习珂朵 ...
- 洛谷P4344 [SHOI2015]脑洞治疗仪(珂朵莉树)
传送门 看到区间推倒……推平就想到珂朵莉树 挖脑洞直接assign,填坑先数一遍再assign再暴力填,数数的话暴力数 //minamoto #include<iostream> #inc ...
- 洛谷P2787 语文1(chin1)- 理理思维(珂朵莉树)
传送门 一看到区间推倒……推平操作就想到珂朵莉树 区间推平直接assign,查询暴力,排序的话开一个桶统计,然后一个字母一个字母加就好了 开桶统计的时候忘了保存原来的左指针然后挂了233 //mina ...
- 洛谷P2082 区间覆盖(加强版)(珂朵莉树)
传送门 虽然是黄题而且还是一波离散就能解决的东西 然而珂朵莉树还是很好用 相当于一开始区间全为0,然后每一次区间赋值,问最后总权值 珂朵莉树搞一搞就好了 //minamoto #include< ...
- 洛谷P2572 [SCOI2010]序列操作(珂朵莉树)
传送门 珂朵莉树是个吼东西啊 这题线段树代码4k起步……珂朵莉树只要2k…… 虽然因为这题数据不随机所以珂朵莉树的复杂度实际上是错的…… 然而能过就行对不对…… (不过要是到时候noip我还真不敢打… ...
- CF915E Physical Education Lessons(珂朵莉树)
中文题面 据说正解是动态开点线段树而且标记也不难下传的样子 然而这种区间推平的题目还是喜欢写珂朵莉树啊……码量小…… 虽然真要构造的话随便卡…… //minamoto #include<cstd ...
- CF896C Willem, Chtholly and Seniorious(珂朵莉树)
中文题面 珂朵莉树的板子……这篇文章很不错 据说还有奈芙莲树和瑟尼欧里斯树…… 等联赛考完去学一下(逃 //minamoto #include<bits/stdc++.h> #define ...
- 珂朵莉树(Chtholly Tree)学习笔记
珂朵莉树(Chtholly Tree)学习笔记 珂朵莉树原理 其原理在于运用一颗树(set,treap,splay......)其中要求所有元素有序,并且支持基本的操作(删除,添加,查找......) ...
- LOJ#557. 「Antileaf's Round」你这衣服租来的吗(FHQ Treap+珂朵莉树)
题面 传送门 题解 好吧我是不太会复杂度分析-- 我们对于每种颜色用一个数据结构维护(比方说线段树或者平衡树,代码里写的平衡树),那么区间询问很容易就可以解决了 所以现在的问题是区间修改,如果区间颜色 ...
随机推荐
- vs2019如何自动生成有下划线前缀的字段名?
vs2019代码自动完成功能非常强大,今天要说的是根据构造函数的参数自动生成字段的事儿. 下图所示,IDE可以根据构造函数的参数自动生成私有字段 这个功能非常好,代码编写效率大大提升,生成的代码如下: ...
- Python 实时获取任务请求对应的Nginx日志
需求描述 项目需求测试过程中,需要向Nginx服务器发送一些用例请求,然后查看对应的Nginx日志,判断是否存在特征内容,来判断任务是否执行成功.为了提升效率,需要将这一过程实现自动化. 实践环境 P ...
- npm和yarn 命令比较
命令比较 npm init | yarn init:创建一个新包 npm run | yarn run:运行 package.json 中定义的脚本 npm test | yarn test:测试一个 ...
- spark基础了解—运行层次结构、standalone与onyarn
spark程序运行层次结构 standalone即主从机制,后续添加了standaloneHA,zk管理master的存活,一旦master挂了会在候选master中诞生新的 HAstandalone ...
- 如何让SQL Server像MySQL一样拥有慢查询日志(Slow Query Log慢日志)
如何让SQL Server像MySQL一样拥有慢查询日志(Slow Query Log慢日志) SQL Server一直以来被人诟病的一个问题是缺少了像MySQL的慢日志功能,程序员和运维无法知道数据 ...
- WorPress基础之谷歌GSC与GA统计代码安装
本篇文章讲介绍什么是GSC和GA以及如何安装. 什么是GSC GSC,全称为Google Search Console,由谷歌官方提供的网站管理工具,可帮助监控和维护网站在Google 搜索结果中的展 ...
- wireshark抓包分析数据
wireshark抓包分析数据 https://www.cnblogs.com/moonbaby/p/10528401.html https://blog.csdn.net/wangyiyungw/a ...
- 工业机器人的力控(Force Control)
相关: https://baijiahao.baidu.com/s?id=1785676027803650068 机器人编程人员需要提前知道机器人的摩擦力.阻力.质量.重力,等数值,然后建立基于物理模 ...
- 《Python数据可视化之matplotlib实践》 源码 第二篇 精进 第五章
图 5.1 import matplotlib.pyplot as plt import numpy as np from matplotlib.ticker import AutoMinorLoca ...
- 强化学习算法之DQN算法中的经验池的实现,experience_replay_buffer部分的实现
本文的相关链接: github上DQN代码的环境搭建,及运行(Human-Level Control through Deep Reinforcement Learning)conda配置 ----- ...