题目描述

给定长度为 \(n\) 的整数序列 \(a_1, a_2, \cdots, a_n\),我们将从该序列中构造出一张无向图 \(G\)。具体来说,对于所有 \(1 \le i < j \le n\),若 \(i - j = a_i - a_j\),则 \(G\) 中将存在一条连接节点 \(i\) 与 \(j\) 的无向边,其边权为 \((a_i + a_j)\)。

求 \(G\) 的一个匹配,使得该匹配中所有边的边权之和最大,并输出最大边权之和。

请回忆:无向图的匹配,指的是从该无向图中选出一些边,使得任意两条边都没有公共的节点。特别地,不选任何边也是一个匹配。

思路

首先我们看到题目中的一句话:

若 \(i - j = a_i - a_j\),则 \(G\) 中将存在一条连接节点 \(i\) 与 \(j\) 的无向边

我们把这个式子两边同时加上 \(j\),减去 \(a_i\),可以得到如下的式子:

\[i - a_i = j - a_j
\]

因此我们可以把原数组转换一下,第 \(i\) 项 \(a_i\) 变成 \(i - a_i\),所有处理后值相同的点之间都会有一条边,形成一个完全图,我们可以把这些点全部塞进一个 map 中。

map<int,vector<int> >Edge;

for(int i=1;i<=n;i++){
scanf("%lld",&a[i]);
Edge[a[i]-i].push_back(a[i]);
}

然后开始分别处理每一个完全子图。由于要我们求无向图的匹配,一个点不会被选超过两次,所以我们可以把所有点按照点权从大到小排序,每一次选择一对点,判断这两个点的和是否为正数,如果是,那么就一定选,否则直接 break 即可。

for(auto it:Edge){
vector<int>E=it.second;
sort(begin(E),end(E),[](int a,int b){return a>b;});
int a=0x3f3f3f3f,b=0x3f3f3f3f;
for(auto it:E){
if(a==0x3f3f3f3f){
a=it;
}else{
b=it;
if(a+b>0) ans+=a+b,a=b=0x3f3f3f3f;
else break;
}
}
}

完整 Code

#include <bits/stdc++.h>
#define int long long
using namespace std; map<int,vector<int> >Edge;
int T,n,a[500005],ans; signed main()
{
scanf("%lld",&T);
while(T--){
Edge.clear();ans=0;
scanf("%lld",&n);
for(int i=1;i<=n;i++){
scanf("%lld",&a[i]);
Edge[a[i]-i].push_back(a[i]);
}
for(auto it:Edge){
vector<int>E=it.second;
sort(begin(E),end(E),[](int a,int b){return a>b;});
int a=0x3f3f3f3f,b=0x3f3f3f3f;
for(auto it:E){
if(a==0x3f3f3f3f){
a=it;
}else{
b=it;
if(a+b>0) ans+=a+b,a=b=0x3f3f3f3f;
else break;
}
}
}
printf("%lld\n",ans);
}
return 0;
}

P9562 [SDCPC2023] G-Matching 题解的更多相关文章

  1. [题解] Atcoder Beginner Contest ABC 270 G Ex 题解

    点我看题 G - Sequence in mod P 稍微观察一下就会发现,进行x次操作后的结果是\(A^xS+(1+\cdots +A^{x-1})B\).如果没有右边那一坨关于B的东西,那我们要求 ...

  2. [LeetCode] Wildcard Matching 题解

    6. Wildcard Matching 题目 Implement wildcard pattern matching with support for '?' and '*'. '?' Matche ...

  3. G - Pyramid 题解(打表)

    题目链接 题目大意 t组数据,给你一个n(n<=1e9)求高度为n的等边三角形,求里面包含了多少个等边三角形 题目思路 打表找规律,然而我一直没找到规律. 看到题解恍然大悟,答案就是C(n+3, ...

  4. Codeforces Round #744 (Div. 3) G题题解

    淦,最后一道题没写出来,...还是我太菜了,不过这个题确实比较有趣. G. Minimal Coverage 简化题意:就是你处在坐标轴的0点上,给你一个序列\(a_i\),每次你可以选择向左走\(a ...

  5. AtCoder Beginner Contest 220部分题(G,H)题解

    刚开始的时候被E题卡住了,不过发现是个数学题后就开始使劲推式子,幸运的是推出来了,之后的F题更是树形DP换根的模板吧,就草草的过了,看了一眼G,随便口胡了一下,赶紧打代码,毕竟时间不多了,最后也没打完 ...

  6. Infinite Fraction Path HDU 6223 2017沈阳区域赛G题题解

    题意:给你一个字符串s,找到满足条件(s[i]的下一个字符是s[(i*i+1)%n])的最大字典序的长度为n的串. 思路:类似后缀数组,每次倍增来对以i开头的字符串排序,复杂度O(nlogn).代码很 ...

  7. SWPU-ACM集训队周赛之组队赛(3-11)G题题解

    点这里去做题 水水水水水,不难发现如下表 t 1 2 3 4 v 1 3 5 7 s 1 4 9 16 明显s=t*t 题目中对10000取模即取后四位,即对1000取余 #include<st ...

  8. 2016 ACM-ICPC 青岛站网络赛G题 题解

    [参考博客][https://blog.csdn.net/Tawn0000/article/details/82255682] 题意: 将n个数按照每k个一组来合并,合并需要花费的cost是两个数的长 ...

  9. 福建工程学院第十四届ACM校赛G题题解

    外传:编剧说了不玩游戏不行 题意: 有n个石堆,我每次只能从某一堆中取偶数个石子,你取奇数个,我先手,先不能操作的人输.问最后谁能赢. 思路: 这个题仔细想想,就发现,取奇数的人有巨大的优势,因为假设 ...

  10. O - Matching 题解(状压dp)

    题目链接 题目大意 给你一个方形矩阵mp,边长为n(n<=21) 有n个男生和女生,如果\(mp[i][j]=1\) 代表第i个男生可以和第j个女生配对 问有多少种两两配对的方式,使得所有男生和 ...

随机推荐

  1. .NET Aspire Preview 4 发布!

    .NET Aspire是一个有态度的云原生应用开发框架,旨在改善生成.NET云原生应用的体验,并提供一组强大的工具来帮助你生成和运行分布式应用.它允许开发者快速创建属于自己的云原生应用,或改造已有的项 ...

  2. .NET开源快速、强大、免费的电子表格组件

    前言 今天大姚给大家分享一个.NET开源(MIT License).快速.强大.免费的电子表格组件,支持数据格式.冻结.大纲.公式计算.图表.脚本执行等.兼容 Excel 2007 (.xlsx) 格 ...

  3. 【报错处理】npm WARN checkPermissions Missing write access to /usr/local/lib/node_modules/yarn

    一.报错现象 二.报错原因 权限不够 三.解决方法 加上sudo sudo npm install -g yarn

  4. CAD和实时渲染之间的差距

    建筑师如何将他们喜爱的CAD工具与虚幻引擎和Twinmotion 等快速实时渲染工具结合使用 每个建筑师都有自己喜欢的设计工具.从Revit的粉丝到阿奇卡德的狂热用户,AEC专业人员通常首选CAD和B ...

  5. JS(函数、作用域、预解析)

    一 函数的概念 在 JS 里面,可能会定义非常多的相同代码或者功能相似的代码,这些代码可能需要大量重复使用.虽然 for循环语句也能实现一些简单的重复操作,但是比较具有局限性,此时我们就可以使用 JS ...

  6. KingbaseESV8R6普通用户无权限执行vacuum

    背景 数据库日志有如下提示: WARNING: skipping "pivot_t1" --- only table or database owner can vacuum it ...

  7. jQuery AJAX 常见属性

    1 jQuery.ajax(...) 2 部分参数: 3 url:请求地址 4 type:请求方式,GET.POST(1.9.0之后用method) 5 headers:请求头 6 data:要发送的 ...

  8. 为什么js项目中金额强烈推荐使用分而不是元

    相信我们都已经知道在js中浮点数据精度的问题了 看下面的例子 0.1 + 0.2 0.30000000000000004 如何解决呢? 在前后端交互过程中统一使用分为单位进行通讯,在最后的表示层处理为 ...

  9. CH395的FTP Server(主动模式)简单应用参考

    FTP(File Transfer Protocol,文件传输协议) 是 TCP/IP 协议组中的协议之一.FTP协议包括两个组成部分,其一为FTP服务器,其二为FTP客户端.本篇文章将基于FTP协议 ...

  10. 密码学系列之:SAFER

    密码学系列之:SAFER 简介 分组密码是一个非常优秀的加密结构,很多常用加的加密算法使用的都是分组算法,比如DES.SAFER表示的也是一种分组密码算法.一起来看看吧. SAFER简介 SAFER的 ...