题目链接

题目

题目描述

Rinne 学到了一个新的奇妙的东西叫做动态图,这里的动态图的定义是边权可以随着操作而变动的图。

当我们在这个图上经过一条边的时候,这个图上所有边的边权都会发生变动。

定义变动函数 \(f(x) = \frac{1}{1-x}\) ,表示我们在图上走过一条边后,图的边权变动情况。

这里指的“图的变动”的意思是将每条边的边权代入上函数,得到的值即为该次变动后的边权。

现在 Rinne 想要知道,在这个变动的图上从 1 到 n 的最短路径。

因为 Rinne 不喜欢负数,所以她只需要你输出经过的边权权值绝对值之和最小的那个值就可以了。

输出答案保留三位小数。

输入描述

第一行两个正整数 N,M,表示这个动态图的点数和边数。

接下来 M 行,每行三个正整数 u,v,w,表示存在一条连接点 u,v 的无向边,且初始权值为 w。

输出描述

如果能到达的话,输出边权绝对值之和最小的答案,保留三位小数。

否则请输出 -1。

示例1

输入

3 3
1 2 2
2 3 2
3 1 3

输出

3.000

说明

走 \(1 \to 2 \to 3\) ,总花费 \(2 + |\frac{1}{1-2}| = 3\)

备注

\(n \leq 100000,m \leq 300000,2 \leq x \leq 1000\)

题解

知识点:最短路。

注意到,边权是一个周期变化 \(|x|,|\frac{1}{1-x}|,|1-\frac{1}{x}|,|x|,\cdots\) 。因此我们保存一个周期的边权跑最短路,再给 \(dis\) 加一个维度记录不同边权下的最短路。

时间复杂度 \(O((n+m)\log m)\)

空间复杂度 \(O(n+m)\)

代码

#include <bits/stdc++.h>
#define ll long long using namespace std; template<class T>
struct Graph {
struct edge {
int v, nxt;
T w;
};
int idx;
vector<int> h;
vector<edge> e; Graph(int n, int m):idx(0), h(n + 1), e(m + 1) {}
void init(int n) {
idx = 0;
h.assign(n + 1, 0);
} void add(int u, int v, const T &w) {
e[++idx] = edge{ v,h[u],w };
h[u] = idx;
}
}; const int N = 100000 + 7, M = 300000 + 7 << 1;
Graph<vector<double>> g(N, M);
int n, m; bool vis[N][3];
double dis[N][3];
struct node {
int v, cnt;
double w;
friend bool operator<(const node &a, const node &b) {
return a.w > b.w;
}
};
priority_queue<node> pq;
double dijkstra(int st) {
for (int i = 1;i <= n;i++) dis[i][0] = dis[i][1] = dis[i][2] = 0x3f3f3f3f;
dis[st][0] = 0;
pq.push({ st,0,0 });
while (!pq.empty()) {
int u = pq.top().v, cnt = pq.top().cnt;
pq.pop();
if (u == n) return dis[u][cnt];
if (vis[u][cnt]) continue;
vis[u][cnt] = 1;
for (int i = g.h[u];i;i = g.e[i].nxt) {
int v = g.e[i].v;
double w = g.e[i].w[cnt];
if (dis[v][(cnt + 1) % 3] > dis[u][cnt] + w) {
dis[v][(cnt + 1) % 3] = dis[u][cnt] + w;
pq.push(node{ v,(cnt + 1) % 3,dis[v][(cnt + 1) % 3] });
}
}
}
return -1;
} int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
cin >> n >> m;
for (int i = 1;i <= m;i++) {
int u, v;
double w;
cin >> u >> v >> w;
g.add(u, v, { w,abs(1 / (1 - w)),abs(1 - 1 / w) });
g.add(v, u, { w,abs(1 / (1 - w)),abs(1 - 1 / w) });
}
double ans = dijkstra(1);
if (ans < 0) cout << -1 << '\n';
else cout << fixed << setprecision(3) << ans << '\n';
return 0;
}

NC22600 Rinne Loves Dynamic Graph的更多相关文章

  1. Nowcoder contest 370H Rinne Loves Dynamic Graph【分层图最短路】

    <题目链接> 题目大意:Rinne 学到了一个新的奇妙的东西叫做动态图,这里的动态图的定义是边权可以随着操作而变动的图.当我们在这个图上经过一条边的时候,这个图上所有边的边权都会发生变动. ...

  2. HDU 6321 Dynamic Graph Matching

    HDU 6321 Dynamic Graph Matching (状压DP) Problem C. Dynamic Graph Matching Time Limit: 8000/4000 MS (J ...

  3. hdu多校第3场C. Dynamic Graph Matching

    Problem C. Dynamic Graph Matching Time Limit: / MS (Java/Others) Memory Limit: / K (Java/Others) Tot ...

  4. HDU6321 Dynamic Graph Matching【状压DP 子集枚举】

    HDU6321 Dynamic Graph Matching 题意: 给出\(N\)个点,一开始没有边,然后有\(M\)次操作,每次操作加一条无向边或者删一条已经存在的边,问每次操作后图中恰好匹配\( ...

  5. 论文笔记:(2019)LDGCNN : Linked Dynamic Graph CNN-Learning on PointCloud via Linking Hierarchical Features

    目录 摘要 一.引言 A.基于视图的方法 B.基于体素的方法 C.基于几何的方法 二.材料 三.方法 A.问题陈述 B.图生成 C.图特征提取 D.变换不变函数 E.LDGCNN架构 F.冻结特征提取 ...

  6. 论文笔记:(TOG2019)DGCNN : Dynamic Graph CNN for Learning on Point Clouds

    目录 摘要 一.引言 二.相关工作 三.我们的方法 3.1 边缘卷积Edge Convolution 3.2动态图更新 3.3 性质 3.4 与现有方法比较 四.评估 4.1 分类 4.2 模型复杂度 ...

  7. 论文阅读 Dynamic Graph Representation Learning Via Self-Attention Networks

    4 Dynamic Graph Representation Learning Via Self-Attention Networks link:https://arxiv.org/abs/1812. ...

  8. 论文阅读 dyngraph2vec: Capturing Network Dynamics using Dynamic Graph Representation Learning

    6 dyngraph2vec: Capturing Network Dynamics using Dynamic Graph Representation Learning207 link:https ...

  9. Nowcoder contest 370B Rinne Loves Graph 【分层图最短路】

    <题目链接> 题目大意: Island 是有一些奇怪的城镇和道路构成的(题目需要,游戏党勿喷),有些城镇之间用双向道路连接起来了,且每条道路有它自己的距离.但是有一些城镇已经被派兵戒严,虽 ...

  10. Nowcoder contest 370F Rinne Loves Edges (简单树形DP) || 【最大流】(模板)

    <题目链接> 题目大意: 一个 $n$ 个节点 $m$ 条边的无向连通图,每条边有一个边权 $w_i$.现在她想玩一个游戏:选取一个 “重要点” S,然后选择性删除一些边,使得原图中所有除 ...

随机推荐

  1. KVM 学习笔记:再谈虚拟化

    虚拟化是云计算的基石,抛开虚拟化谈云计算无异于缘木求鱼,不得要领. 虚拟化简介 虚拟化是一种技术,它是对物理硬件资源的虚拟.通过虚拟化使得应用运行在虚拟化之后的虚拟机上,达到充分利用物理资源的目的. ...

  2. AI正在改变人类社会 - 内容行业的衰落

    现在的 AI 技术,每天都在进化.我有一种感觉,普通人大概没意识到,它马上就要改变人类社会了. 历史上,这种事一再发生.在你不知不觉中,某些大事件悄悄酝酿,突然就冲击到了你的生活,将你的人生全部打乱, ...

  3. 07-verilog & sytem verilog

    一.数据类型 二值逻辑变量 bit 不赋值的时候,变量初始默认为0 x或z的值会转变为0 bit vector--bit矢量 bit [msb,lsb] variable_name = [initia ...

  4. PR 调整时间线宽度

    1.问题 这里的宽度太小,不好进行下一步的调整 2.解决方法 方法一 按下=可以放宽 按下-(=左边的那个键)可以缩小宽度 方法二 拖动下方的滑动条即可 方法三 按住ALT+滚轮,即可调节

  5. 【MicroPython】用 c 添加接口 -- 添加 type

    [来源]https://www.eemaker.com/micropython-type.html

  6. springboot - 解决使用pagehelper 报 SQL语句异常

    原因: mapper.xml 中的sql加上了分号. <select id="search" resultType="***.Table"> sel ...

  7. SpringMVC - 加载静态资源

    静态资源过滤 spring-config.xml <!-- 3,(1)让Spring MVC不处理静态资源 .(2)加载静态资源,也称为资源过滤 --> <mvc:default-s ...

  8. Laravel - 模板中的url

    <!-- 1, url --> <a href="{{url('/')}}">跳转到主页</a>   <!-- 2,action  方法  ...

  9. Mygin实现动态路由

    本篇是Mygin的第四篇 目的 使用 Trie 树实现动态路由解析. 参数绑定 前缀树 本篇比前几篇要复杂一点,原来的路由是用map实现,索引非常高效,但是有一个弊端,键值对的存储的方式,只能用来索引 ...

  10. canal报错nosuchmethod ..bytebuffer

    解决方法:更新jdk版本与es一致