Solution -「CF 724F」Uniformly Branched Trees
Description
Link.
给定三个数 \(n,d,mod\),求有多少种 \(n\) 个点的不同构的树满足:除了度数为 \(1\) 的结点外,其余结点的度数均为 \(d\)。答案对质数 \(mod\) 取模。
Solution
感觉这个题好神啊,看 Editorial 看了半天。
先考虑 rooted 情况。设 \(f(i,j,k)\) 为有 \(i\) 个结点,当前根有 \(j\) 棵 subtree,最大的子树大小不超过 \(k\) 的答案,字数内的结点的度数皆为 given \(d\)(除了当前根本身)。
转移即:
\]
意义我就直接 copy CSDN@forever_shi 了:
解释一下这个式子,就是你子树大小不超过 \(k\) 的可以从都不超过 \(k−1\) 的转移过来,然后我们可以之前子树都是不超过 \(k−1\),现在开始是不超过 \(k\) 的了,也就是在当前选了若干个大小是 \(k\) 的子树,而这几个是一个可重组合,于是乘那个组合数。
#include<bits/stdc++.h>
typedef long long LL;
int n,d,MOD,far[1010],exfar[1010],f[1010][20][1010];
void exGCD(int one,int ano,int &x,int &y)
{
if(ano==0)
{
x=1;
y=0;
}
else
{
exGCD(ano,one%ano,y,x);
y-=(one/ano)*x;
}
}
int inv(int val)
{
int res,w;
exGCD(val,MOD,res,w);
return (res%MOD+MOD)%MOD;
}
int C(int n,int k)
{
if(n<k) return 0;
else
{
int res=1;
for(int i=1;i<=k;++i) res=LL(res)*(n-i+1)%MOD;
return LL(res)*exfar[k]%MOD;
}
}
int main()
{
scanf("%d %d %d",&n,&d,&MOD);
if(n<=2)
{
printf("1\n");
return 0;
}
far[0]=exfar[0]=1;
for(int i=1;i<=d;++i) far[i]=LL(far[i-1])*i%MOD;
for(int i=1;i<=d;++i) exfar[i]=inv(far[i]);
for(int i=0;i<=n;++i) f[1][0][i]=1;
for(int i=2;i<=n;++i)
{
for(int j=1;j<i && j<=d;++j)
{
for(int k=1;k<=n;++k)
{
f[i][j][k]=f[i][j][k-1];
for(int l=1;l*k<i && l<=j;++l)
{
if(k>1) f[i][j][k]=(f[i][j][k]+LL(f[i-k*l][j-l][k-1])*C(f[k][d-1][k-1]+l-1,l)%MOD)%MOD;
else f[i][j][k]=(f[i][j][k]+LL(f[i-k*l][j-l][k-1])*C(f[k][0][k-1]+l-1,l)%MOD)%MOD;
}
}
}
}
if(n&1) printf("%d\n",f[n][d][n>>1]);
else printf("%d\n",(f[n][d][n>>1]-C(f[n>>1][d-1][n>>1],2)+MOD)%MOD);
return 0;
}
Solution -「CF 724F」Uniformly Branched Trees的更多相关文章
- 「Codeforces 724F」Uniformly Branched Trees
题目大意 如果两棵树可以通过重标号后变为完全相同,那么它们就是同构的. 将中间节点定义为度数大于 \(1\) 的节点.计算由 \(n\) 个节点,其中所有的中间节点度数都为 \(d\) 的互不同构的树 ...
- Solution -「CF 1237E」Balanced Binary Search Trees
\(\mathcal{Description}\) Link. 定义棵点权为 \(1\sim n\) 的二叉搜索树 \(T\) 是 好树,当且仅当: 除去最深的所有叶子后,\(T\) 是满的: ...
- Solution -「CF 917D」Stranger Trees
\(\mathcal{Description}\) Link. 给定一棵包含 \(n\) 个点的有标号树,求与这棵树重合恰好 \(0,1,\cdots,n-1\) 条边的树的个数,对 \(10 ...
- Solution -「CF 1342E」Placing Rooks
\(\mathcal{Description}\) Link. 在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...
- Solution -「CF 1622F」Quadratic Set
\(\mathscr{Description}\) Link. 求 \(S\subseteq\{1,2,\dots,n\}\),使得 \(\prod_{i\in S}i\) 是完全平方数,并最 ...
- Solution -「CF 923F」Public Service
\(\mathscr{Description}\) Link. 给定两棵含 \(n\) 个结点的树 \(T_1=(V_1,E_1),T_2=(V_2,E_2)\),求一个双射 \(\varph ...
- Solution -「CF 923E」Perpetual Subtraction
\(\mathcal{Description}\) Link. 有一个整数 \(x\in[0,n]\),初始时以 \(p_i\) 的概率取值 \(i\).进行 \(m\) 轮变换,每次均匀随机 ...
- Solution -「CF 1586F」Defender of Childhood Dreams
\(\mathcal{Description}\) Link. 定义有向图 \(G=(V,E)\),\(|V|=n\),\(\lang u,v\rang \in E \Leftrightarr ...
- Solution -「CF 623E」Transforming Sequence
题目 题意简述 link. 有一个 \(n\) 个元素的集合,你需要进行 \(m\) 次操作.每次操作选择集合的一个非空子集,要求该集合不是已选集合的并的子集.求操作的方案数,对 \(10^9 ...
- Solution -「CF 1023F」Mobile Phone Network
\(\mathcal{Description}\) Link. 有一个 \(n\) 个结点的图,并给定 \(m_1\) 条无向带权黑边,\(m_2\) 条无向无权白边.你需要为每条白边指定边权 ...
随机推荐
- 使用 conda 和 Jupyter 创建你的自定义 R 包,转换笔记为幻灯片
创建你的自定义 R 包 出于用户使用方便考虑,Anaconda 已经在 "R Essentials" 中打包了一些最常用的数据科学 R 包.使用 conda metapackage ...
- 苹果WWDC发布会总结
今年的全球开发者大会没有让人失望.在今天的主题演讲中,苹果首次展示了备受期待的混合现实耳机,证实了过去几个月出现的许多谣言. 虽然这次苹果的 Vision Pro耳机成为了焦点,但该公司还发布了一些其 ...
- FnOnce , FnMut <RUST>
FnOnce 1 #[lang = "fn_once"] 2 #[must_use = "closures are lazy and do nothing unless ...
- CKS 考试题整理 (16)-Pod安全策略
Task 创建一个名为restrict-policy的新的PodSecurityPolicy,以防止特权Pod的创建. 创建一个名为restrict-access-role并使用新创建的PodSecu ...
- 手牵手带你实现mini-vue
1 前言 随着 Vue.React.Angularjs 等框架的诞生,数据驱动视图的理念也深入人心,就 Vue 来说,它拥有着双向数据绑定.虚拟dom.组件化.视图与数据相分离等等造福程序员的优点,那 ...
- 【WebServer】项目总体流程
1. 项目总体流程: 事件处理模式:采用Epoll边沿触发的IO多路复用技术,模拟Proactor模式: 主线程使用epoll监听与客户端连接的socket,并在主线程中对这些socket执行数据读写 ...
- Linux Nacos2.2.0版本集群搭建,常见报错问题解决
准备: 服务器,nacos,mysql,nginx,java,maven Nacos 官网:https://nacos.io 下载地址github:https://github.com/alibaba ...
- 为什么要重写equals要重写hashcode方法
Java 比较(==, equals) 一.= = ==:比较两个对象的引用是否是同一个地址 二.equals object中equals方法调用的就是==,可以在其他类中重写该方法. 三.为什么要重 ...
- Solon Web 也支持响应式开发了?!
"solon.web.flux" 是 solon v2.3.6 新推出的生态插件,为 solon web 提供响应式接口支持 (io.projectreactor) .为什么叫这个 ...
- Android实时获取摄像头画面传输至PC端
前言 最近在做一个PC端小应用,需要获取摄像头画面,但是电脑摄像头像素太低,而且位置调整不方便,又不想为此单独买个摄像头.于是想起了之前淘汰掉的手机,成像质量还是杠杠的,能不能把手机摄像头连接到电脑上 ...