题目描述

This is the hard version of this problem. The only difference is the limit of $ n $ - the length of the input string. In this version, $ 1 \leq n \leq 10^6 $ .

Let's define a correct bracket sequence and its depth as follow:

  • An empty string is a correct bracket sequence with depth $ 0 $ .
  • If "s" is a correct bracket sequence with depth $ d $ then "(s)" is a correct bracket sequence with depth $ d + 1 $ .
  • If "s" and "t" are both correct bracket sequences then their concatenation "st" is a correct bracket sequence with depth equal to the maximum depth of $ s $ and $ t $ .

For a (not necessarily correct) bracket sequence $ s $ , we define its depth as the maximum depth of any correct bracket sequence induced by removing some characters from $ s $ (possibly zero). For example: the bracket sequence $ s = $ "())(())" has depth $ 2 $ , because by removing the third character we obtain a correct bracket sequence "()(())" with depth $ 2 $ .

Given a string $ a $ consists of only characters '(', ')' and '?'. Consider all (not necessarily correct) bracket sequences obtained by replacing all characters '?' in $ a $ by either '(' or ')'. Calculate the sum of all the depths of all these bracket sequences. As this number can be large, find it modulo $ 998244353 $ .

Hacks in this problem can be done only if easy and hard versions of this problem was solved.

输入格式

The only line contains a non-empty string consist of only '(', ')' and '?'. The length of the string is at most $ 10^6 $ .

考虑 \(O(n^2)\)

先尝试求出深度。一个括号序列我们最后一定可以把他删成 ((((....)))) 的形式,也就是在括号序列中找到一个位置 \(i\) , \(s_i=\)'(' 且 \(l\) 左边的左括号数量等于其右边的右括号数量。枚举这个 \(i\) 在哪。设 \(i\) 前面有 \(l_i\) 个左括号, \(p_i\) 个问号,后面有 \(r_i\) 个右括号,\(q_i\) 个问号。

\(\begin{aligned}
&\sum\limits_{i=1}^n\sum\limits_{j=0}^{p_i}(l_i+j)\binom{p_i}{j}\binom{q_i}{j+l_i-r_i}\\&=\sum\limits_{i=1}^nl_i\sum\limits_{j=0}^{p_i}\binom{p_i}{j}\binom{q_i}{q_i-j-l_i+r_i}+\sum\limits_{i=1}^n\sum\limits_{j=0}^{p_i}j\binom{p_i}{j}\binom{q_i}{q_i-j-l_i+r_i}\\&=l_i\binom{p_i+q_i}{q_i-l_i+r_i}+\sum\limits_{i=0}^{p_i}p_i\binom{p_i-1}{j-1}\binom{q_i}{q_i-j-l_i+r_i}
\\&=l_i\binom{p_i+q_i}{q_i-l_i+r_i}+p_i\binom{p_i+q_i-1}{q_i-l_i+r_i-1}
\end{aligned}\)

#include<bits/stdc++.h>
using namespace std;
const int N=2e6+5,P=998244353;
char s[N];
int l[N],p[N],r[N],q[N],jc[N],iv[N],inv[N],n,ans;
int C(int n,int m)
{
if(n<m||m<0)
return 0;
return jc[n]*1LL*iv[m]%P*iv[n-m]%P;
}
int main()
{
scanf("%s",s+1),n=strlen(s+1);
for(int i=1;s[i];i++)
{
l[i]=l[i-1]+(s[i]=='(');
p[i]=p[i-1]+(s[i]=='?');
}
for(int i=n;i;i--)
{
r[i]=r[i+1]+(s[i]==')');
q[i]=q[i+1]+(s[i]=='?');
}
jc[0]=jc[1]=iv[0]=iv[1]=inv[1]=1;
for(int i=2;i<N;i++)
{
jc[i]=1LL*jc[i-1]*i%P;
inv[i]=1LL*(P-P/i)*inv[P%i]%P;
iv[i]=1LL*iv[i-1]*inv[i]%P;
}
for(int i=1;i<=n;i++)
{
(ans+=(1LL*l[i]*C(p[n],q[i+1]-l[i]+r[i+1])+1LL*p[i]*C(p[n]-1,q[i+1]-l[i]+r[i+1]-1))%P)%=P;
}
printf("%d",ans);
}

[CF1264D]Beautiful Bracket Sequence的更多相关文章

  1. CF1264D2 Beautiful Bracket Sequence

    我们枚举每两个字符的空档,统计一个空档左边有 \(l\) 个左括号, 右边有 \(r\) 个右括号,左边有 \(u\) 个问号,右边有 \(v\) 个问号. 则对于 \(p\) 的答案 \(ans_p ...

  2. CF1264D2 Beautiful Bracket Sequence (hard version)

    考虑\(D1\)的\(O(n^2)\),我们直接进行组合处理. 考虑在\(p\)这个位置,左边有\(l\)个(,右边有\(r\)个),左边有\(l\)个问号,右边有\(r\)个问号. 这个位置的贡献为 ...

  3. CF1264D1 Beautiful Bracket Sequence (easy version)

    考虑在一个确定的括号序列中,我们可以枚举中间位置,按左右最长延伸出去的答案计算. 我们很自然的思考,我们直接维护左右两边,在删除一些字符后能够延伸的最长长度. 我们设\(f_{i,j}\)为\(i\) ...

  4. Codeforces 1264D - Beautiful Bracket Sequence(组合数学)

    Codeforces 题面传送门 & 洛谷题面传送门 首先对于这样的题目,我们应先考虑如何计算一个括号序列 \(s\) 的权值.一件非常显然的事情是,在深度最深的.是原括号序列的子序列的括号序 ...

  5. UESTC 1546 Bracket Sequence

                                        Bracket Sequence Time Limit: 3000MS   Memory Limit: 65536KB   64 ...

  6. CF#138 div 1 A. Bracket Sequence

    [#138 div 1 A. Bracket Sequence] [原题] A. Bracket Sequence time limit per test 2 seconds memory limit ...

  7. CodeForces 670E Correct Bracket Sequence Editor(list和迭代器函数模拟)

    E. Correct Bracket Sequence Editor time limit per test 2 seconds memory limit per test 256 megabytes ...

  8. Educational Codeforces Round 4 C. Replace To Make Regular Bracket Sequence 栈

    C. Replace To Make Regular Bracket Sequence 题目连接: http://www.codeforces.com/contest/612/problem/C De ...

  9. Codeforces Beta Round #5 C. Longest Regular Bracket Sequence 栈/dp

    C. Longest Regular Bracket Sequence Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.c ...

  10. (中等) UESTC 94 Bracket Sequence,线段树+括号。

    There is a sequence of brackets, which supports two kinds of operations. we can choose a interval [l ...

随机推荐

  1. IDEA使用@Autowired注解为什么会提示不建议?

    ​在使用IDEA编写Spring相关的项目时,当在字段上使用@Autowired注解时,总会出现一个波浪线提示:"Field injection is not recommended.&qu ...

  2. 【io_uring】liburing 用户库源码分析

    文章目录 整体流程 `io_uring_queue_init` `io_uring_get_sqe` `io_uring_prep_#OP` `io_uring_sqe_set_data` `io_u ...

  3. Go 并发编程 - runtime 协程调度(三)

    Go Runtime Go runtime 可以形象的理解为 Go 程序运行时的环境,类似于 JVM.不同于 JVM 的是,Go 的 runtime 与业务程序直接打包在一块,是一个可执行文件,直接运 ...

  4. 《CTFshow-Web入门》06. Web 51~60

    @ 目录 web51 题解 web52 题解 原理 web53 题解 原理 web54 题解 原理 web55 题解 原理 web56 题解 原理 web57 题解 原理 web58 题解 原理 we ...

  5. 安装软件提示 "无法完成操作, 因为文件包含病毒或潜在的垃圾软件" 如何处理

    在Windows端安装一些小众电脑软件的时候,经常会遇到无法安装的问题,比较常见的情况是会提示 "无法完成操作, 因为文件包含病毒或潜在的垃圾软件", 或者提示"不能执行 ...

  6. HTML一键打包APK工具最新版1.9.1更新(附下载地址)

    HMTL网址打包APK,可以把本地HTML项目, Egret游戏,网页游戏,或者网站打包为一个安卓应用APK文件,无需编写任何代码,也无需配置安卓开发环境,支持在最新的安卓设备上安装运行. HTML一 ...

  7. mpi转以太网连接300PLC与施耐德 Quantum PLC 通讯

    S7300 PLC转以太网无需编程与施耐德 Quantum PLC modbusTCP通信 方案介绍: 西门子300PLC转以太网不需要编写程序通过兴达易控MPI-ETH-XD1.0与施耐德 Quan ...

  8. 4款免费且实用的.NET反编译工具

    反编译工具的作用 .NET反编译工具能够将已经编译好的.NET程序集转换为易于理解的源代码,它们可以帮助开发人员恢复丢失的源代码.理解和分析第三方组件dll.学习其他人的代码.更好的查找修复 bug ...

  9. PLSQL_developer安装与配置

    前言: 记录安装与配置操作 环境: 客户机:windows 服务器:虚拟机中的windows server 2003 /---------------------------------------- ...

  10. 前端三件套系例之BootStrap——BootStrap基础、 BootStrap布局

    文章目录 1 BootStrap基础 1 什么是BootStrap 2 BootStrap的版本 3 BootStrap 下载 4 CDN服务 5 目录结构 6 基本模板 7 浏览器支持 8 浏览器兼 ...