[CF1264D]Beautiful Bracket Sequence
题目描述
This is the hard version of this problem. The only difference is the limit of $ n $ - the length of the input string. In this version, $ 1 \leq n \leq 10^6 $ .
Let's define a correct bracket sequence and its depth as follow:
- An empty string is a correct bracket sequence with depth $ 0 $ .
- If "s" is a correct bracket sequence with depth $ d $ then "(s)" is a correct bracket sequence with depth $ d + 1 $ .
- If "s" and "t" are both correct bracket sequences then their concatenation "st" is a correct bracket sequence with depth equal to the maximum depth of $ s $ and $ t $ .
For a (not necessarily correct) bracket sequence $ s $ , we define its depth as the maximum depth of any correct bracket sequence induced by removing some characters from $ s $ (possibly zero). For example: the bracket sequence $ s = $ "())(())" has depth $ 2 $ , because by removing the third character we obtain a correct bracket sequence "()(())" with depth $ 2 $ .
Given a string $ a $ consists of only characters '(', ')' and '?'. Consider all (not necessarily correct) bracket sequences obtained by replacing all characters '?' in $ a $ by either '(' or ')'. Calculate the sum of all the depths of all these bracket sequences. As this number can be large, find it modulo $ 998244353 $ .
Hacks in this problem can be done only if easy and hard versions of this problem was solved.
输入格式
The only line contains a non-empty string consist of only '(', ')' and '?'. The length of the string is at most $ 10^6 $ .
考虑 \(O(n^2)\)
先尝试求出深度。一个括号序列我们最后一定可以把他删成 ((((....)))) 的形式,也就是在括号序列中找到一个位置 \(i\) , \(s_i=\)'(' 且 \(l\) 左边的左括号数量等于其右边的右括号数量。枚举这个 \(i\) 在哪。设 \(i\) 前面有 \(l_i\) 个左括号, \(p_i\) 个问号,后面有 \(r_i\) 个右括号,\(q_i\) 个问号。
\(\begin{aligned}
&\sum\limits_{i=1}^n\sum\limits_{j=0}^{p_i}(l_i+j)\binom{p_i}{j}\binom{q_i}{j+l_i-r_i}\\&=\sum\limits_{i=1}^nl_i\sum\limits_{j=0}^{p_i}\binom{p_i}{j}\binom{q_i}{q_i-j-l_i+r_i}+\sum\limits_{i=1}^n\sum\limits_{j=0}^{p_i}j\binom{p_i}{j}\binom{q_i}{q_i-j-l_i+r_i}\\&=l_i\binom{p_i+q_i}{q_i-l_i+r_i}+\sum\limits_{i=0}^{p_i}p_i\binom{p_i-1}{j-1}\binom{q_i}{q_i-j-l_i+r_i}
\\&=l_i\binom{p_i+q_i}{q_i-l_i+r_i}+p_i\binom{p_i+q_i-1}{q_i-l_i+r_i-1}
\end{aligned}\)
#include<bits/stdc++.h>
using namespace std;
const int N=2e6+5,P=998244353;
char s[N];
int l[N],p[N],r[N],q[N],jc[N],iv[N],inv[N],n,ans;
int C(int n,int m)
{
if(n<m||m<0)
return 0;
return jc[n]*1LL*iv[m]%P*iv[n-m]%P;
}
int main()
{
scanf("%s",s+1),n=strlen(s+1);
for(int i=1;s[i];i++)
{
l[i]=l[i-1]+(s[i]=='(');
p[i]=p[i-1]+(s[i]=='?');
}
for(int i=n;i;i--)
{
r[i]=r[i+1]+(s[i]==')');
q[i]=q[i+1]+(s[i]=='?');
}
jc[0]=jc[1]=iv[0]=iv[1]=inv[1]=1;
for(int i=2;i<N;i++)
{
jc[i]=1LL*jc[i-1]*i%P;
inv[i]=1LL*(P-P/i)*inv[P%i]%P;
iv[i]=1LL*iv[i-1]*inv[i]%P;
}
for(int i=1;i<=n;i++)
{
(ans+=(1LL*l[i]*C(p[n],q[i+1]-l[i]+r[i+1])+1LL*p[i]*C(p[n]-1,q[i+1]-l[i]+r[i+1]-1))%P)%=P;
}
printf("%d",ans);
}
[CF1264D]Beautiful Bracket Sequence的更多相关文章
- CF1264D2 Beautiful Bracket Sequence
我们枚举每两个字符的空档,统计一个空档左边有 \(l\) 个左括号, 右边有 \(r\) 个右括号,左边有 \(u\) 个问号,右边有 \(v\) 个问号. 则对于 \(p\) 的答案 \(ans_p ...
- CF1264D2 Beautiful Bracket Sequence (hard version)
考虑\(D1\)的\(O(n^2)\),我们直接进行组合处理. 考虑在\(p\)这个位置,左边有\(l\)个(,右边有\(r\)个),左边有\(l\)个问号,右边有\(r\)个问号. 这个位置的贡献为 ...
- CF1264D1 Beautiful Bracket Sequence (easy version)
考虑在一个确定的括号序列中,我们可以枚举中间位置,按左右最长延伸出去的答案计算. 我们很自然的思考,我们直接维护左右两边,在删除一些字符后能够延伸的最长长度. 我们设\(f_{i,j}\)为\(i\) ...
- Codeforces 1264D - Beautiful Bracket Sequence(组合数学)
Codeforces 题面传送门 & 洛谷题面传送门 首先对于这样的题目,我们应先考虑如何计算一个括号序列 \(s\) 的权值.一件非常显然的事情是,在深度最深的.是原括号序列的子序列的括号序 ...
- UESTC 1546 Bracket Sequence
Bracket Sequence Time Limit: 3000MS Memory Limit: 65536KB 64 ...
- CF#138 div 1 A. Bracket Sequence
[#138 div 1 A. Bracket Sequence] [原题] A. Bracket Sequence time limit per test 2 seconds memory limit ...
- CodeForces 670E Correct Bracket Sequence Editor(list和迭代器函数模拟)
E. Correct Bracket Sequence Editor time limit per test 2 seconds memory limit per test 256 megabytes ...
- Educational Codeforces Round 4 C. Replace To Make Regular Bracket Sequence 栈
C. Replace To Make Regular Bracket Sequence 题目连接: http://www.codeforces.com/contest/612/problem/C De ...
- Codeforces Beta Round #5 C. Longest Regular Bracket Sequence 栈/dp
C. Longest Regular Bracket Sequence Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.c ...
- (中等) UESTC 94 Bracket Sequence,线段树+括号。
There is a sequence of brackets, which supports two kinds of operations. we can choose a interval [l ...
随机推荐
- IDEA使用@Autowired注解为什么会提示不建议?
在使用IDEA编写Spring相关的项目时,当在字段上使用@Autowired注解时,总会出现一个波浪线提示:"Field injection is not recommended.&qu ...
- 【io_uring】liburing 用户库源码分析
文章目录 整体流程 `io_uring_queue_init` `io_uring_get_sqe` `io_uring_prep_#OP` `io_uring_sqe_set_data` `io_u ...
- Go 并发编程 - runtime 协程调度(三)
Go Runtime Go runtime 可以形象的理解为 Go 程序运行时的环境,类似于 JVM.不同于 JVM 的是,Go 的 runtime 与业务程序直接打包在一块,是一个可执行文件,直接运 ...
- 《CTFshow-Web入门》06. Web 51~60
@ 目录 web51 题解 web52 题解 原理 web53 题解 原理 web54 题解 原理 web55 题解 原理 web56 题解 原理 web57 题解 原理 web58 题解 原理 we ...
- 安装软件提示 "无法完成操作, 因为文件包含病毒或潜在的垃圾软件" 如何处理
在Windows端安装一些小众电脑软件的时候,经常会遇到无法安装的问题,比较常见的情况是会提示 "无法完成操作, 因为文件包含病毒或潜在的垃圾软件", 或者提示"不能执行 ...
- HTML一键打包APK工具最新版1.9.1更新(附下载地址)
HMTL网址打包APK,可以把本地HTML项目, Egret游戏,网页游戏,或者网站打包为一个安卓应用APK文件,无需编写任何代码,也无需配置安卓开发环境,支持在最新的安卓设备上安装运行. HTML一 ...
- mpi转以太网连接300PLC与施耐德 Quantum PLC 通讯
S7300 PLC转以太网无需编程与施耐德 Quantum PLC modbusTCP通信 方案介绍: 西门子300PLC转以太网不需要编写程序通过兴达易控MPI-ETH-XD1.0与施耐德 Quan ...
- 4款免费且实用的.NET反编译工具
反编译工具的作用 .NET反编译工具能够将已经编译好的.NET程序集转换为易于理解的源代码,它们可以帮助开发人员恢复丢失的源代码.理解和分析第三方组件dll.学习其他人的代码.更好的查找修复 bug ...
- PLSQL_developer安装与配置
前言: 记录安装与配置操作 环境: 客户机:windows 服务器:虚拟机中的windows server 2003 /---------------------------------------- ...
- 前端三件套系例之BootStrap——BootStrap基础、 BootStrap布局
文章目录 1 BootStrap基础 1 什么是BootStrap 2 BootStrap的版本 3 BootStrap 下载 4 CDN服务 5 目录结构 6 基本模板 7 浏览器支持 8 浏览器兼 ...