题目描述

This is the hard version of this problem. The only difference is the limit of $ n $ - the length of the input string. In this version, $ 1 \leq n \leq 10^6 $ .

Let's define a correct bracket sequence and its depth as follow:

  • An empty string is a correct bracket sequence with depth $ 0 $ .
  • If "s" is a correct bracket sequence with depth $ d $ then "(s)" is a correct bracket sequence with depth $ d + 1 $ .
  • If "s" and "t" are both correct bracket sequences then their concatenation "st" is a correct bracket sequence with depth equal to the maximum depth of $ s $ and $ t $ .

For a (not necessarily correct) bracket sequence $ s $ , we define its depth as the maximum depth of any correct bracket sequence induced by removing some characters from $ s $ (possibly zero). For example: the bracket sequence $ s = $ "())(())" has depth $ 2 $ , because by removing the third character we obtain a correct bracket sequence "()(())" with depth $ 2 $ .

Given a string $ a $ consists of only characters '(', ')' and '?'. Consider all (not necessarily correct) bracket sequences obtained by replacing all characters '?' in $ a $ by either '(' or ')'. Calculate the sum of all the depths of all these bracket sequences. As this number can be large, find it modulo $ 998244353 $ .

Hacks in this problem can be done only if easy and hard versions of this problem was solved.

输入格式

The only line contains a non-empty string consist of only '(', ')' and '?'. The length of the string is at most $ 10^6 $ .

考虑 \(O(n^2)\)

先尝试求出深度。一个括号序列我们最后一定可以把他删成 ((((....)))) 的形式,也就是在括号序列中找到一个位置 \(i\) , \(s_i=\)'(' 且 \(l\) 左边的左括号数量等于其右边的右括号数量。枚举这个 \(i\) 在哪。设 \(i\) 前面有 \(l_i\) 个左括号, \(p_i\) 个问号,后面有 \(r_i\) 个右括号,\(q_i\) 个问号。

\(\begin{aligned}
&\sum\limits_{i=1}^n\sum\limits_{j=0}^{p_i}(l_i+j)\binom{p_i}{j}\binom{q_i}{j+l_i-r_i}\\&=\sum\limits_{i=1}^nl_i\sum\limits_{j=0}^{p_i}\binom{p_i}{j}\binom{q_i}{q_i-j-l_i+r_i}+\sum\limits_{i=1}^n\sum\limits_{j=0}^{p_i}j\binom{p_i}{j}\binom{q_i}{q_i-j-l_i+r_i}\\&=l_i\binom{p_i+q_i}{q_i-l_i+r_i}+\sum\limits_{i=0}^{p_i}p_i\binom{p_i-1}{j-1}\binom{q_i}{q_i-j-l_i+r_i}
\\&=l_i\binom{p_i+q_i}{q_i-l_i+r_i}+p_i\binom{p_i+q_i-1}{q_i-l_i+r_i-1}
\end{aligned}\)

#include<bits/stdc++.h>
using namespace std;
const int N=2e6+5,P=998244353;
char s[N];
int l[N],p[N],r[N],q[N],jc[N],iv[N],inv[N],n,ans;
int C(int n,int m)
{
if(n<m||m<0)
return 0;
return jc[n]*1LL*iv[m]%P*iv[n-m]%P;
}
int main()
{
scanf("%s",s+1),n=strlen(s+1);
for(int i=1;s[i];i++)
{
l[i]=l[i-1]+(s[i]=='(');
p[i]=p[i-1]+(s[i]=='?');
}
for(int i=n;i;i--)
{
r[i]=r[i+1]+(s[i]==')');
q[i]=q[i+1]+(s[i]=='?');
}
jc[0]=jc[1]=iv[0]=iv[1]=inv[1]=1;
for(int i=2;i<N;i++)
{
jc[i]=1LL*jc[i-1]*i%P;
inv[i]=1LL*(P-P/i)*inv[P%i]%P;
iv[i]=1LL*iv[i-1]*inv[i]%P;
}
for(int i=1;i<=n;i++)
{
(ans+=(1LL*l[i]*C(p[n],q[i+1]-l[i]+r[i+1])+1LL*p[i]*C(p[n]-1,q[i+1]-l[i]+r[i+1]-1))%P)%=P;
}
printf("%d",ans);
}

[CF1264D]Beautiful Bracket Sequence的更多相关文章

  1. CF1264D2 Beautiful Bracket Sequence

    我们枚举每两个字符的空档,统计一个空档左边有 \(l\) 个左括号, 右边有 \(r\) 个右括号,左边有 \(u\) 个问号,右边有 \(v\) 个问号. 则对于 \(p\) 的答案 \(ans_p ...

  2. CF1264D2 Beautiful Bracket Sequence (hard version)

    考虑\(D1\)的\(O(n^2)\),我们直接进行组合处理. 考虑在\(p\)这个位置,左边有\(l\)个(,右边有\(r\)个),左边有\(l\)个问号,右边有\(r\)个问号. 这个位置的贡献为 ...

  3. CF1264D1 Beautiful Bracket Sequence (easy version)

    考虑在一个确定的括号序列中,我们可以枚举中间位置,按左右最长延伸出去的答案计算. 我们很自然的思考,我们直接维护左右两边,在删除一些字符后能够延伸的最长长度. 我们设\(f_{i,j}\)为\(i\) ...

  4. Codeforces 1264D - Beautiful Bracket Sequence(组合数学)

    Codeforces 题面传送门 & 洛谷题面传送门 首先对于这样的题目,我们应先考虑如何计算一个括号序列 \(s\) 的权值.一件非常显然的事情是,在深度最深的.是原括号序列的子序列的括号序 ...

  5. UESTC 1546 Bracket Sequence

                                        Bracket Sequence Time Limit: 3000MS   Memory Limit: 65536KB   64 ...

  6. CF#138 div 1 A. Bracket Sequence

    [#138 div 1 A. Bracket Sequence] [原题] A. Bracket Sequence time limit per test 2 seconds memory limit ...

  7. CodeForces 670E Correct Bracket Sequence Editor(list和迭代器函数模拟)

    E. Correct Bracket Sequence Editor time limit per test 2 seconds memory limit per test 256 megabytes ...

  8. Educational Codeforces Round 4 C. Replace To Make Regular Bracket Sequence 栈

    C. Replace To Make Regular Bracket Sequence 题目连接: http://www.codeforces.com/contest/612/problem/C De ...

  9. Codeforces Beta Round #5 C. Longest Regular Bracket Sequence 栈/dp

    C. Longest Regular Bracket Sequence Time Limit: 20 Sec Memory Limit: 256 MB 题目连接 http://codeforces.c ...

  10. (中等) UESTC 94 Bracket Sequence,线段树+括号。

    There is a sequence of brackets, which supports two kinds of operations. we can choose a interval [l ...

随机推荐

  1. (2023.7.24)软件加密与解密-2-1-程序分析方法[XDbg].md

    body { font-size: 15px; color: rgba(51, 51, 51, 1); background: rgba(255, 255, 255, 1); font-family: ...

  2. CodeForces 1367F1 Flying Sort (Easy Version)

    题意 给一个长度为\(n\)的数组,数组中的数互不相同,你可以有两种操作 将某一个数放置在数组开头 将某一个数放置在数组结尾 问最小操作多少次可以得到一个递增数列 分析 因为数组中的数很大,我们可以将 ...

  3. openNebula集群搭建

    openNebula集群搭建 目录 openNebula集群搭建 OpenNebula概述 环境介绍及部署前准备 1. 安装步骤 1.关闭防火墙 2.配置epel源地和opennebula源 3.安装 ...

  4. Nomad系列-Nomad网络模式

    系列文章 Nomad 系列文章 概述 Nomad 的网络和 Docker 的也有很大不同, 和 K8s 的有很大不同. 另外, Nomad 不同版本(Nomad 1.3 版本前后)或是否集成 Cons ...

  5. 搭建 QT6+OpenCv4.7+CMake的环境

    本文主要介绍如何搭建QT6+OpenCv的开发环境,基本流程如下 先安装CMake3.27.3,用来编译适用用QT的OpenCv的源码,安装完成后要配置系统的环境变量 安装Qt6的开发环境,并配置环境 ...

  6. Python脚本批量造数据、跑定时任务协助测试

    批量造数据 连接Mysql的信息 1 import pymysql 2 # 数据库连接信息 3 # 多个库要有多个conn 4 conn = pymysql.connect( 5 host=" ...

  7. 云原生(docker jenkins k8s)docker篇

    docker (1)架构 ● Docker_Host: ○ 安装Docker的主机 ● Docker Daemon: ○ 运行在Docker主机上的Docker后台进程 ● Client: ○ 操作D ...

  8. Python Flask 上下文管理源码分析

    Python Flask 上下文管理源码分析 前言 Flask 上下文管理可以说是 Flask 非常具有特色的设计,它总共可分为 2 个大的方向: 应用上下文管理:通过 current_app 即可拿 ...

  9. Text2Cypher:大语言模型驱动的图查询生成

    话接上文<图技术在 LLM 下的应用:知识图谱驱动的大语言模型 Llama Index> 同大家简单介绍过 LLM 和图.知识图谱相关的结合,现在我来和大家分享下最新的成果.毕竟,从 GP ...

  10. 织梦DedeCMS文章内容页调用标签方法教程

    织梦DedeCMS是新手站长使用比较多的建站软件,其模板制作也比较方便,一些站长朋友对其模板调用标签不是太熟悉,小编为大家介绍下织梦文章内容页调用标签的方法. 1.调用文章标题: {dede:fiel ...