P3317 [SDOI2014]重建
思路
变元矩阵树定理可以统计最小生成树边权积的和,将A矩阵变为边权,D变为与该点相连的边权和,K=D-A,求K的行列式即可
把式子化成
\]
然后上变元矩阵树定理即可
注意\(p_i\)等于1时要让\(1-p_i\)等于eps
代码
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
const double eps =1e-5;
int n;
double a[100][100],all=1;
double gauss(void){
double ans=1.0;
for(int i=1;i<n;i++){
for(int j=i+1;j<n;j++){
int mx=i;
if(fabs(a[j][i])>fabs(a[mx][i]))
mx=j;
if(mx!=i){
for(int k=1;k<n;k++)
swap(a[mx][k],a[i][k]);
ans*=-1;
}
}
for(int j=i+1;j<n;j++){
double rate=a[j][i]/a[i][i];
for(int k=i;k<n;k++)
a[j][k]=a[j][k]-a[i][k]*rate;
}
ans*=a[i][i];
}
return ans;
}
int main(){
scanf("%d",&n);
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
scanf("%lf",&a[i][j]);
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
double mx=a[i][j];
mx=(1-mx);
if(fabs(mx)<eps)
mx=eps;
if(i<j)
all*=mx;
a[i][j]/=mx;
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(i!=j){
a[i][i]+=a[i][j];
a[i][j]=-a[i][j];
}
}
}
printf("%.10lf\n",gauss()*all);
return 0;
}
P3317 [SDOI2014]重建的更多相关文章
- P3317 [SDOI2014]重建(Matrix-tree+期望)
P3317 [SDOI2014]重建 详情看这位神犇的blog 剩下的注释在code里吧....... #include<iostream> #include<cstdio> ...
- P3317 [SDOI2014]重建 变元矩阵树定理 高斯消元
传送门:https://www.luogu.org/problemnew/show/P3317 这道题的推导公式还是比较好理解的,但是由于这个矩阵是小数的,要注意高斯消元方法的使用: #include ...
- 洛谷P3317 [SDOI2014]重建 [Matrix-Tree定理]
传送门 思路 相信很多人像我一样想直接搞Matrix-Tree定理,而且还过了样例,然后交上去一分没有. 但不管怎样这还是对我们的思路有一定启发的. 用Matrix-Tree定理搞,求出的答案是 \[ ...
- 题解 P3317 [SDOI2014]重建
题解 前置芝士:深度理解的矩阵树定理 矩阵树定理能求生成树个数的原因是,它本质上求的是: \[\sum_T \prod_{e\in T} w_e \] 其中 \(w_e\) 是边权,那么我们会发现其实 ...
- 【BZOJ 3534】 3534: [Sdoi2014]重建 (Matrix-Tree Theorem)
3534: [Sdoi2014]重建 Time Limit: 10 Sec Memory Limit: 512 MBSec Special JudgeSubmit: 709 Solved: 32 ...
- 【BZOJ3534】【Luogu P3317】 [SDOI2014]重建 变元矩阵树,高斯消元
题解看这里,主要想说一下以前没见过的变元矩阵树还有前几个题见到的几个小细节. 邻接矩阵是可以带权值的.求所有生成树边权和的时候我们有一个基尔霍夫矩阵,是度数矩阵减去邻接矩阵.而所谓变元矩阵树实际上就是 ...
- BZOJ3534:[SDOI2014]重建——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=3534 https://www.luogu.org/problemnew/show/P3317 T国 ...
- [SDOI2014]重建
题目描述 T国有N个城市,用若干双向道路连接.一对城市之间至多存在一条道路. 在一次洪水之后,一些道路受损无法通行.虽然已经有人开始调查道路的损毁情况,但直到现在几乎没有消息传回. 辛运的是,此前T国 ...
- 【BZOJ 3534】: [Sdoi2014]重建
题目大意:(略) 题解: 相对误差……我好方. 考虑答案应该为所有合法答案概率之和.对于一个合法的生成树,其出现概率应为所有选取边的概率出现的积 乘以 所有未选取边不出现概率的积. 即: $\;\pr ...
随机推荐
- sitecore系统教程之禁用xDB和Xdb跟踪
Sitecore体验管理包含未启用体验数据库(xDB)且无需购买xDB许可证情况下使用Sitecore内容管理系统. 除了在未启用xDB的情况下运行Sitecore Experience Platfo ...
- python seek()方法报错:“io.UnsupportedOperation: can't do nonzero cur-relative seeks”
今天使用seek()时报错了, 看下图 然后就百度了一下,找到了解决方法 这篇博客https://www.cnblogs.com/xisheng/p/7636736.html 帮忙解决了问题, 照理说 ...
- python 创建二维数组的方法
废话不多说,直接上代码: #coding=utf-8 def two_di_demo1(): a=[] for i in range(10): a.append([]) for j in range( ...
- 设计模式之Singleton(单态)(转)
定义: Singleton模式主要作用是保证在Java应用程序中,一个类Class只有一个实例存在. 在很多操作中,比如建立目录 数据库连接都需要这样的单线程操作. 还有, singleton能够被状 ...
- 51Nod 2020 排序相减
题目链接:https://www.51nod.com/onlineJudge/questionCode.html#!problemId=2020 思路:排序 水水 #include<iostre ...
- AtCoder Regular Contest 077 D - 11
题目链接:http://arc077.contest.atcoder.jp/tasks/arc077_b Time limit : 2sec / Memory limit : 256MB Score ...
- win10 +python3.6环境下安装opencv以及pycharm导入cv2有问题的解决办法
一.安装opencv 借鉴的这篇博客已经写得很清楚了--------https://blog.csdn.net/u011321546/article/details/79499598 ,这 ...
- winscp中使用sudo的方法
用截图了解如何在 WinSCP 中使用 sudo. 首先你需要检查你尝试使用 WinSCP 连接的 sftp 服务器的二进制文件的位置.你可以使用以下命令检查 SFTP 服务器二进制文件位置: [ro ...
- 前端框架VUE----组件的创建
vue的核心基础就是组件的使用,玩好了组件才能将前面学的基础更好的运用起来.组件的使用更使我们的项目解耦合.更加符合vue的设计思想MVVM. 那接下来就跟我看一下如何在一个Vue实例中使用组件吧! ...
- 手头没证书,如何给https做代理?Nginx TCP转发
线上的一个海外充值接口(https)经常因我朝网络问题中断,想借助hk的机器做个https反向代理又没证书. 一开始 一开始想到的办法是借助Nginx的tcp转发进行代理: 编译NGINX时加入 -- ...