hdu1796 How many integers can you find 容斥原理
Now you get a number N, and a M-integers set, you should find out how many integers which are small than N, that they can divided exactly by any integers in the set. For example, N=12, and M-integer set is {2,3}, so there is another set {2,3,4,6,8,9,10}, all the integers of the set can be divided exactly by 2 or 3. As a result, you just output the number 7.
容斥原理裸题
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<math.h>
using namespace std;
typedef long long ll; inline int gcd(int a,int b){
return b?gcd(b,a%b):a;
} int num[]; int main(){
int n,m;
while(scanf("%d%d",&n,&m)!=EOF){
n--;
for(int i=;i<=m;++i){
scanf("%d",&num[i]);
if(!num[i]){
i--;
m--;
}
}
ll ans=;
for(int i=;i<(<<m);++i){
int bit=;
int tmp=;
for(int j=;j<=m;++j){
if(i&(<<(j-))){
bit++;
tmp=tmp/gcd(tmp,num[j])*num[j];
}
}
if(bit%)ans+=n/tmp;
else ans-=n/tmp;
}
printf("%lld\n",ans);
}
return ;
}
hdu1796 How many integers can you find 容斥原理的更多相关文章
- HDU1796 How many integers can you find(容斥原理)
题目给一个数字集合,问有多少个小于n的正整数能被集合里至少一个元素整除. 当然是容斥原理来计数了,计算1个元素组合的有几个减去2个元素组合的LCM有几个加上3个元素组合的LCM有几个.注意是LCM. ...
- HDU 1796 Howmany integers can you find (容斥原理)
How many integers can you find Time Limit: 12000/5000 MS (Java/Others) Memory Limit: 65536/32768 ...
- Hdu1796 How many integers can you find 2017-06-27 15:54 25人阅读 评论(0) 收藏
How many integers can you find Time Limit : 12000/5000ms (Java/Other) Memory Limit : 65536/32768K ...
- HDU 1796 How many integers can you find(容斥原理)
How many integers can you find Time Limit: 12000/5000 MS (Java/Others) Memory Limit: 65536/32768 ...
- hdu1796 How many integers can you find
//设置m,Q小于n可以设置如何几号m随机多项整除 //利用已知的容斥原理 //ans = 数是由数的数目整除 - 数为整除的两个数的数的最小公倍数 + 由三个数字... #include<cs ...
- HDU 1796 How many integers can you find(容斥原理)
题意 就是给出一个整数n,一个具有m个元素的数组,求出1-n中有多少个数至少能整除m数组中的一个数 (1<=n<=10^18.m<=20) 题解 这题是容斥原理基本模型. 枚举n中有 ...
- HDU1796 How many integers can you find【容斥定理】
题目链接: http://acm.hdu.edu.cn/showproblem.php? pid=1796 题目大意: 给你一个整数N.和M个整数的集合{A1.A2.-.Am}.集合内元素为非负数(包 ...
- 容斥原理学习(Hdu 4135,Hdu 1796)
题目链接Hdu4135 Co-prime Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Oth ...
- hdu分类 Math Theory(还有三题!)
这个分类怎么觉得这么水呢.. 这个分类做到尾的模板集: //gcd int gcd(int a,int b){return b? gcd(b, a % b) : a;} //埃氏筛法 O(nlogn) ...
随机推荐
- Docker安装websphere(四)
在Docker容器里安装webshpere <!--前提:已经安装好了docker,能够正常使用.--> (1)docker安装websphere(需要账号和密码登录,不挂载数据卷) 获取 ...
- [Leetcode 376]摇摆序列 Wiggle Subsequence
[题目] A sequence of numbers is called a wiggle sequence if the differences between successive numbers ...
- Cracking The Coding Interview 1.2
//原文: // // Write code to reverse a C-Style String. (C-String means that "abcd" is represe ...
- Android : 修改内核源码 and 编译、打包成新的boot.img
一.Android内核源码的下载: 1.Google GIT地址: $ git clone https://android.googlesource.com/kernel/common.git $ g ...
- 4.4 C++虚析构函数
参考:http://www.weixueyuan.net/view/6373.html 总结: 构造函数是不能声明为虚函数的,析构函数可以被声明为虚函数. 将基类的析构函数声明为虚函数之后,派生类的析 ...
- Centos7安装配置iptable
CentOS7默认的防火墙不是iptables,而是firewalle. 安装iptable iptable-service #先检查是否安装了iptables service iptables st ...
- DevExpress WPF v18.2新版亮点(一)
买 DevExpress Universal Subscription 免费赠 万元汉化资源包1套! 限量15套!先到先得,送完即止!立即抢购>> 行业领先的.NET界面控件2018年第 ...
- redis 五大数据类型之hash篇
1.hset/hget/hmset/hmget/hgetall/hdel --hgetall 是以截图中 key-value 分别一一显示出来,k1对应v1 ,k2对应v2 2.hlen 3.hexi ...
- 《uniGUI for cBuilder入门到精通》新书预定
<uniGUI for cBuilder入门到精通>火热预定中,从零开始带你入瓮带你飞,手把手教你如何快速安装,开发和部署一个web系统,前十名用户售价暂定100元,后续价格每本200元, ...
- 利用itext生成pdf的简单例子
一.itext简介 iText是著名的开放源码的站点sourceforge一个项目,是用于生成PDF文档的一个java类库.通过iText不仅可以生成PDF或rtf的文档,而且可以将XML.Html文 ...