冷门知识点……

原题:

小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分中,则称这个划分是关于s,t的割。 对于带权图来说,将所有顶点处在不同部分的边的权值相加所得到的值定义为这个割的容量,而s,t的最小割指的是在关于s,t的割中容量最小的割” 现给定一张无向图,小白有若干个形如“图中有多少对点它们的最小割的容量不超过x呢”的疑问,小蓝虽然很想回答这些问题,但小蓝最近忙着挖木块,于是作为仍然是小蓝的好友,你又有任务了。

1<=u,v<=n,0<=c<=106

分治最小割:O(跑得过)时间处理n个点两两之间的最小割

每次在当前集合中随意找两个点,最小割成两个集合,递归处理这两个集合,开O(n^2)数组记录答案

注意初始化

没了

(注意"两组测试数据之间用空行隔开",否则PE)

代码:

 #include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
const int oo=;
int rd(){int z=,mk=; char ch=getchar();
while(ch<''||ch>''){if(ch=='-')mk=-; ch=getchar();}
while(ch>=''&&ch<=''){z=(z<<)+(z<<)+ch-''; ch=getchar();}
return z*mk;
}
struct ddd{int nxt,y,v,rvs;}e[]; int lk[],ltp=;
inline void ist(int x,int y,int z){
e[++ltp].nxt=lk[x],lk[x]=ltp,e[ltp].y=y,e[ltp].v=z,e[ltp].rvs=ltp+;
e[++ltp].nxt=lk[y],lk[y]=ltp,e[ltp].y=x,e[ltp].v=z,e[ltp].rvs=ltp-;
}
int n,m,qst; int s,t;
int lvl[];
int q[],hd=;
bool st[];
int quq[],tmp[];
int mnct[][];
bool gtlvl(){
memset(lvl,,sizeof(lvl));
q[hd=]=s,lvl[s]=;
for(int k=;k<=hd;++k)
for(int i=lk[q[k]];i;i=e[i].nxt)if(e[i].v && !lvl[e[i].y])
lvl[e[i].y]=lvl[q[k]]+,q[++hd]=e[i].y;
return lvl[t];
}
int mxflw(int x,int y){
if(x==t) return y;
int bwl=,flw=;
for(int i=lk[x];i && bwl<y;i=e[i].nxt)if(e[i].v && lvl[e[i].y]==lvl[x]+)
if((flw=mxflw(e[i].y,min(y-bwl,e[i].v)))){
bwl+=flw;
e[i].v-=flw,e[e[i].rvs].v+=flw;
}
if(!bwl) lvl[x]=;
return bwl;
}
void gtst(){
q[hd=]=s,st[s]=true;
for(int k=;k<=hd;++k)for(int i=lk[q[k]];i;i=e[i].nxt)
if(e[i].v && !st[e[i].y]) st[e[i].y]=true,q[++hd]=e[i].y;
}
int dnc(){
int bwl=,flw=;
while(gtlvl())while((flw=mxflw(s,oo))) bwl+=flw;
memset(st,,sizeof(st));
gtst();
return bwl;
}
void sprt(int l,int r){
if(l>=r) return ;
for(int i=;i<=ltp;++i) e[i].v=e[e[i].rvs].v=(e[i].v+e[e[i].rvs].v)>>;
s=quq[l],t=quq[r];
int mxflw=dnc();
for(int i=;i<=n;++i)if(st[i])for(int j=;j<=n;++j)if(!st[j])
mnct[j][i]=mnct[i][j]=min(mnct[i][j],mxflw);
int hd1=l,hd2=r;
for(int i=l;i<=r;++i) tmp[(st[quq[i]] ? hd2-- : hd1++)]=quq[i];
for(int i=l;i<=r;++i) quq[i]=tmp[i];
sprt(l,hd1-),sprt(hd2+,r);
}
void clr(){ memset(lk,,sizeof(lk)),ltp=; memset(mnct,,sizeof(mnct));}
int main(){//freopen("ddd.in","r",stdin);
int T; cin>>T; while(T--){ clr();
cin>>n>>m;
for(int i=;i<=n;++i) quq[i]=i;
int l,r,v,cnt=;
while(m--) l=rd(),r=rd(),v=rd(),ist(l,r,v);
sprt(,n);
cin>>qst;
while(qst--){
v=rd(),cnt=;
for(int i=;i<=n;++i)for(int j=i+;j<=n;++j)if(mnct[i][j]<=v) ++cnt;
printf("%d\n",cnt);
}
cout<<endl;
continue;
}
return ;
}

【BZOJ2229】【ZJOI2011】最小割的更多相关文章

  1. BZOJ2229: [Zjoi2011]最小割

    题解: 真是一道神题!!! 大家还是围观JZP的题解吧(网址找不到了...) 代码: #include<cstdio> #include<cstdlib> #include&l ...

  2. bzoj千题计划139:bzoj2229: [Zjoi2011]最小割

    http://www.lydsy.com/JudgeOnline/problem.php?id=2229 最小割树介绍:http://blog.csdn.net/jyxjyx27/article/de ...

  3. bzoj2229: [Zjoi2011]最小割(分治最小割+最小割树思想)

    2229: [Zjoi2011]最小割 题目:传送门 题解: 一道非常好的题目啊!!! 蒟蒻的想法:暴力枚举点对跑最小割记录...绝对爆炸啊.... 开始怀疑是不是题目骗人...难道根本不用网络流?? ...

  4. [bzoj2229][Zjoi2011]最小割_网络流_最小割树

    最小割 bzoj-2229 Zjoi-2011 题目大意:题目链接. 注释:略. 想法: 在这里给出最小割树的定义. 最小割树啊,就是这样一棵树.一个图的最小割树满足这棵树上任意两点之间的最小值就是原 ...

  5. BZOJ2229—— [Zjoi2011]最小割

    0.题目大意:求两点之间的最小割,然后找出其中小于x的数量 1.分析:最小割树水题,上个板子就好 #include <queue> #include <ctime> #incl ...

  6. BZOJ2229[Zjoi2011]最小割——最小割树

    题目描述 小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有结点分成两个部分,如果结点s,t不在同一个部分中,则称这个划分 ...

  7. BZOJ2229: [Zjoi2011]最小割(最小割树)

    传送门 最小割树 算法 初始时把所有点放在一个集合 从中任选两个点出来跑原图中的最小割 然后按照 \(s\) 集合与 \(t\) 集合的归属把当前集合划分成两个集合,递归处理 这样一共跑了 \(n − ...

  8. bzoj2229: [Zjoi2011]最小割(最小割树)

    传送门 这题是用最小割树做的(不明白最小割树是什么的可以去看看这一题->这里) 有了最小割树就很简单了……点数那么少……每次跑出一个最大流就暴力搞一遍就好了 //minamoto #includ ...

  9. 【BZOJ2229】[ZJOI2011]最小割(网络流,最小割树)

    [BZOJ2229][ZJOI2011]最小割(网络流,最小割树) 题面 BZOJ 洛谷 题解 戳这里 那么实现过程就是任选两点跑最小割更新答案,然后把点集划分为和\(S\)联通以及与\(T\)联通. ...

  10. 【BZOJ2229】[Zjoi2011]最小割 最小割树

    [BZOJ2229][Zjoi2011]最小割 Description 小白在图论课上学到了一个新的概念——最小割,下课后小白在笔记本上写下了如下这段话: “对于一个图,某个对图中结点的划分将图中所有 ...

随机推荐

  1. pyhton字符串

    a = 5 # 1 + 1 = 10 + 1 = 11 + 1 = 100 + 1 = 101print(a.bit_length()) # 计算一个数字的二进制长度. a = 10# print(t ...

  2. WPF 基于Adorner实现类似Popup效果

    1.  什么是Adorner 装饰器是一种特殊类型的FrameworkElement,可用来向用户提供可视提示. 装饰器有很多用途,可用来向元素添加功能句柄,或者提供有关某个控件的状态信息. 2.  ...

  3. Blazor

    https://docs.microsoft.com/zh-cn/windows/uwp/get-started/construct-form-learning-track https://docs. ...

  4. [Codeforces721E]Road to Home

    Problem 有一条长为l的公路(可看为数轴),n盏路灯,每盏路灯有照射区间且互不重叠. 有个人要走过这条公路,他只敢在路灯照射的地方唱歌,固定走p唱完一首歌,歌曲必须连续唱否则就要至少走t才能继续 ...

  5. 重载的方式写Python的post请求

    #encoding=utf-8#__author__="Lanyangyang" import unittestimport requestsimport json # This ...

  6. let var区别

    function varTest() { var x = 1; if (true) { var x = 2; // 同样的变量! console.log(x); } console.log(x); } ...

  7. vivado对task和function的可综合支持

    手册UG901,对vivado可综合的语句支持进行了描述,HDL包括:verilog-2001,system-verilog,VHDL: verilog-2001扩展了对task和function的支 ...

  8. C++四种类型之间的转换

    C风格的强制类型转换(Type Cast)很简单,不管什么类型的转换统统是: TYPE b = (TYPE)a. C++风格的类型转换提供了4种类型转换操作符来应对不同场合的应用. const_cas ...

  9. Android修行之路------List view无法获取监听方法

    注意: 1.在list view自定义布局中如果添加滚动布局,会导致自定义布局无法获取监听. 2.如果ListView的每项布局里有像Button,ImageButton之类View的控键时,这些Vi ...

  10. nodejs .http模块, cheerio模块 实现 小爬虫.

    代码: var http = require("http"); var cheerio = require("cheerio"); var url = 'htt ...