Ref: http://blog.csdn.net/gdfsg/article/details/50904811

#include "opencv2/video/tracking.hpp"
#include "opencv2/highgui/highgui.hpp"
#include <iostream>
#include <stdio.h>
using namespace std;
using namespace cv; //计算相对窗口的坐标值,因为坐标原点在左上角,所以sin前有个负号
static inline Point calcPoint(Point2f center, double R, double angle)
{
return center + Point2f((float)cos(angle), (float)-sin(angle))*(float)R;
} static void help()
{
printf( "\nExamle of c calls to OpenCV's Kalman filter.\n"
" Tracking of rotating point.\n"
" Rotation speed is constant.\n"
" Both state and measurements vectors are 1D (a point angle),\n"
" Measurement is the real point angle + gaussian noise.\n"
" The real and the estimated points are connected with yellow line segment,\n"
" the real and the measured points are connected with red line segment.\n"
" (if Kalman filter works correctly,\n"
" the yellow segment should be shorter than the red one).\n"
"\n"
" Pressing any key (except ESC) will reset the tracking with a different speed.\n"
" Pressing ESC will stop the program.\n"
);
} int main(int, char**)
{
help();
Mat img(, , CV_8UC3);
KalmanFilter KF(, , ); //创建卡尔曼滤波器对象KF
Mat state(, , CV_32F); //state(角度,△角度)
Mat processNoise(, , CV_32F);
Mat measurement = Mat::zeros(, , CV_32F); //定义测量值
char code = (char)-; for(;;)
{
//1.初始化
randn( state, Scalar::all(), Scalar::all(0.1) ); KF.transitionMatrix = *(Mat_<float>(, ) << , , , ); //转移矩阵A[1,1;0,1] //将下面几个矩阵设置为对角阵
setIdentity(KF.measurementMatrix); //测量矩阵H
setIdentity(KF.processNoiseCov, Scalar::all(1e-)); //系统噪声方差矩阵Q
setIdentity(KF.measurementNoiseCov, Scalar::all(1e-)); //测量噪声方差矩阵R
setIdentity(KF.errorCovPost, Scalar::all()); //后验错误估计协方差矩阵P randn(KF.statePost, Scalar::all(), Scalar::all(0.1)); //x(0)初始化 for(;;)
{
Point2f center(img.cols*0.5f, img.rows*0.5f); //center图像中心点
float R = img.cols/.f; //半径
double stateAngle = state.at<float>(); //跟踪点角度
Point statePt = calcPoint(center, R, stateAngle); //跟踪点坐标statePt //2. 预测
Mat prediction = KF.predict(); //计算预测值,返回x'
double predictAngle = prediction.at<float>(); //预测点的角度
Point predictPt = calcPoint(center, R, predictAngle); //预测点坐标predictPt //3.更新
//measurement是测量值
randn( measurement, Scalar::all(), Scalar::all(KF.measurementNoiseCov.at<float>())); //给measurement赋值N(0,R)的随机值 // generate measurement
measurement += KF.measurementMatrix*state; //z = z + H*x; double measAngle = measurement.at<float>();
Point measPt = calcPoint(center, R, measAngle); // plot points
//定义了画十字的方法,值得学习下
#define drawCross( center, color, d ) \
line( img, Point( center.x - d, center.y - d ), \
Point( center.x + d, center.y + d ), color, , CV_AA, ); \
line( img, Point( center.x + d, center.y - d ), \
Point( center.x - d, center.y + d ), color, , CV_AA, ) img = Scalar::all();
drawCross( statePt, Scalar(,,), );
drawCross( measPt, Scalar(,,), );
drawCross( predictPt, Scalar(,,), );
line( img, statePt, measPt, Scalar(,,), , CV_AA, );
line( img, statePt, predictPt, Scalar(,,), , CV_AA, ); //调用kalman这个类的correct方法得到加入观察值校正后的状态变量值矩阵
if(theRNG().uniform(,) != )
KF.correct(measurement); //不加噪声的话就是匀速圆周运动,加了点噪声类似匀速圆周运动,因为噪声的原因,运动方向可能会改变
randn( processNoise, Scalar(), Scalar::all(sqrt(KF.processNoiseCov.at<float>(, )))); //vk
state = KF.transitionMatrix*state + processNoise; imshow( "Kalman", img );
code = (char)waitKey(); if( code > )
break;
}
if( code == || code == 'q' || code == 'Q' )
break;
} return ;
}

Result: 

[OpenCV] Samples 14: kalman filter的更多相关文章

  1. [Scikit-learn] Dynamic Bayesian Network - Kalman Filter

    看上去不错的网站:http://iacs-courses.seas.harvard.edu/courses/am207/blog/lecture-18.html SciPy Cookbook:http ...

  2. 卡尔曼滤波—Simple Kalman Filter for 2D tracking with OpenCV

    之前有关卡尔曼滤波的例子都比较简单,只能用于简单的理解卡尔曼滤波的基本步骤.现在让我们来看看卡尔曼滤波在实际中到底能做些什么吧.这里有一个使用卡尔曼滤波在窗口内跟踪鼠标移动的例子,原作者主页:http ...

  3. 机器学习理论基础学习14.1---线性动态系统-卡曼滤波 Kalman filter

    一.背景 动态模型 = 图 + 时间 动态模型有三种:HMM.线性动态系统(kalman filter).particle filter 线性动态系统与HMM的区别是假设相邻隐变量之间满足线性高斯分布 ...

  4. (转) How a Kalman filter works, in pictures

    How a Kalman filter works, in pictures I have to tell you about the Kalman filter, because what it d ...

  5. 卡尔曼滤波(Kalman Filter)在目标边框预测中的应用

    1.卡尔曼滤波的导论 卡尔曼滤波器(Kalman Filter),是由匈牙利数学家Rudolf Emil Kalman发明,并以其名字命名.卡尔曼出生于1930年匈牙利首都布达佩斯.1953,1954 ...

  6. 一文搞懂 SLAM 中的Extension Kalman Filter 算法编程

    作者 | Doreen 01 问题描述 预先知道事物未来的状态总是很有价值的! √ 预知台风的路线可以避免或减轻重大自然灾害的损失. √ 敌国打过来的导弹,如果能够高精度预测轨迹,就能有效拦截. √ ...

  7. 卡尔曼滤波器 Kalman Filter (转载)

    在学习卡尔曼滤波器之前,首先看看为什么叫“卡尔曼”.跟其他著名的理论(例如傅立叶变换,泰勒级数等等)一样,卡尔曼也是一个人的名字,而跟他们不同的是,他是个现代人! 卡 尔曼全名Rudolf Emil ...

  8. [OpenCV] Samples 10: imagelist_creator

    yaml写法的简单例子.将 $ ./ 1 2 3 4 5 命令的参数(代表图片地址)写入yaml中. 写yaml文件. 参考:[OpenCV] Samples 06: [ML] logistic re ...

  9. (二). 细说Kalman滤波:The Kalman Filter

    本文为原创文章,转载请注明出处,http://www.cnblogs.com/ycwang16/p/5999034.html 前面介绍了Bayes滤波方法,我们接下来详细说说Kalman滤波器.虽然K ...

随机推荐

  1. PHP类的继承

    每个子类(也叫派生类)都会在设置自己的属性前调用父类的构造方法.父类(也叫基类或超类)现在仅知道自己的数据,子类一般是父类的特例,要避免告诉父类任何关于子类的信息 以下为一个使用继承的实例: < ...

  2. grep/pgrep/egrep/fgrep

    Differences between grep, pgrep, egrep, and fgrep (Linux): grep grep is an acronym that stands for & ...

  3. 关于在win8系统下用VMware 9.0装系统导致物理机不断重启的解决办法

    一.问题描述 前段时间将操作系统换成了Win8,安装上VMware 9.0英文版.然后在VMware中安装centos系统,结果每次到安装系统的时候,物理机系统就会莫名其妙地自动重启,毫无征兆地出现, ...

  4. 用ndk-stack分析应用native程序异常crash掉

    adb logcat | "/home/hxl/bin/android-ndk-r10d/ndk-stack" -sym "/home/hxl/plu/BadGame/p ...

  5. 微服务平台(Micro Service Platform : MSP)旨在提供一个集开发、测试、运维于一体的开发者专属平台,让开发者能快速构建或使用微服务,让开发更简单,让运维更高效。

    微服务平台(Micro Service Platform : MSP)旨在提供一个集开发.测试.运维于一体的开发者专属平台,让开发者能快速构建或使用微服务,让开发更简单,让运维更高效. MSP采用业界 ...

  6. .net源码调试 http://referencesource.microsoft.com/

    其实关于.net源码调试 网上的资料已经很多了,我以前转载的文章有 VS2010下如何调试Framework源代码(即FCL) 和 如何使你的应用程序调试进.NET Framework 4.5源代码内 ...

  7. Eclipse复制项目彻底修改项目名称

    一.需求 需要新做一个项目,框架还是Maven+SSM,于是就把原来的项目copy了一个,操作是直接选中原项目,CTRL+C ,然后粘贴,这个时候会让你选择工作空间和给一个新的项目名字,如下图,输入新 ...

  8. Spark机器学习(11):协同过滤算法

    协同过滤(Collaborative Filtering,CF)算法是一种常用的推荐算法,它的思想就是找出相似的用户或产品,向用户推荐相似的物品,或者把物品推荐给相似的用户.怎样评价用户对商品的偏好? ...

  9. QT程序打包发布

    本来感觉这是一个简单的操作,今天看见群里有人在问这个问题,他说网上查了很多都不成功,突然就想把自己初学的时候记录一下! 题目谢了QT程序的打包发布,那就是两步骤:打包+发布! 注释:这篇博文用的是Qt ...

  10. pycharm调整代码长度分割线

    1.File ->  Settings  ->  Code Style -> Right margin (columns) 的值为80,大功告成. 2.具体设置的数值可以根据个人电脑 ...