P1593 因子和
P1593 因子和
新算法:
#define ni 逆元
先质因数分解,
(1+p1^1+p1^2...p1^x)*(1+p2^1+p2^2...p2^x)
然后套等比数列公式就可以了。
#include<iostream>
#include<cstdio>
#include<queue>
#include<algorithm>
#include<cmath>
#include<ctime>
#include<set>
#define mod 9901
#include<cstring>
#define inf long long_MAX
#define For(i,a,b) for(register long long i=a;i<=b;i++)
#define p(a) putchar(a)
#define g() getchar()
//by war
//2017.10.27
using namespace std;
long long num,b;
struct node
{
long long cnt;
long long p;
}a[];//40M
long long prime[];//40M
long long cnt;
long long tot;
bool vis[];
long long ans; void in(long long &x)
{
long long y=;
char c=g();x=;
while(c<''||c>'')
{
if(c=='-')
y=-;
c=g();
}
while(c<=''&&c>='')x=x*+c-'',c=g();
x*=y;
}
void o(long long x)
{
if(x<)
{
p('-');
x=-x;
}
if(x>)o(x/);
p(x%+'');
} void Euler(long long x)
{
For(i,,x)
{
if(!vis[i])prime[++cnt]=i;
for(register long long j=;j<=cnt&&prime[j]*i<=x;j++)
{
vis[prime[j]*i]=true;
if(i%prime[j]==)
break;
}
}
} void resolve(long long x)
{
For(i,,cnt)
{
if(x%prime[i]==)
{
a[++tot].p=prime[i];
while(x%prime[i]==)
{
a[tot].cnt++;
x/=prime[i];
}
}
}
if(x>)
{
a[++tot].p=x;
a[tot].cnt++;
}
} long long ksm(long long a,long long b)
{
if(b==)
return ;
while(b%==)
{
a=(a*a)%mod;
b>>=;
}
long long r=;
while(b>)
{
if(b%==)
r=(r*a)%mod;
a=(a*a)%mod;
b>>=;
}
return r%mod;
} void exgcd(long long a,long long b,long long &x,long long &y)
{
if(!b)
{
x=;
y=;
return;
}
exgcd(b,a%b,x,y);
long long temp=x;
x=y;
y=temp-(a/b)*y;
} long long series(long long q,long long n)
{
long long fz=ksm(q,n)-;
long long x,y,b;
exgcd(q-,mod,x,y);
long long ni=x;
ni=(ni%mod+mod)%mod;
return (fz*ni%mod+mod)%mod;
} int main()
{
in(num),in(b);
Euler(sqrt(num));
resolve(num);
ans=;
For(i,,tot)
ans=ans*series(a[i].p,a[i].cnt*b+)%mod;
o(ans%mod);
return ;
}
P1593 因子和的更多相关文章
- 洛谷P1593 因子和
题目描述 输入两个正整数a和b,求a^b的因子和.结果太大,只要输出它对9901的余数. 输入输出格式 输入格式: 仅一行,为两个正整数a和b(0≤a,b≤50000000). 输出格式: a^b的因 ...
- 洛谷 P1593 因子和
https://www.luogu.org/problemnew/show/P1593#sub 利用约数和定理:可以去看一下公式第13条 然后这个题目的话,要求$a^b$,那么我们首先可以先将a分解然 ...
- luogu P1593 因子和
不要吐槽博主总做这些数论氵题 首先我们看到这种因数问题,果断质因数分解 所以当前数\(a=p_1^{k_1}*p_2^{k_2}...*p_m^{k_m}\) 可得\(a^b=p_1^{k_1*b}* ...
- Uva 11395 Sigma Function (因子和)
http://acm.hust.edu.cn/vjudge/contest/view.action?cid=109329#problem/C 题目在文末 题意:1~n (n:1~1012)中,因子 ...
- LightOj 1098 - A New Function(求1-n所有数的因子和)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1098 题意:给你一个数n (0 ≤ n ≤ 2 * 109),求n以内所有数的因子和, ...
- nylg 小M的因子和
小M的因子和 时间限制:1000 ms | 内存限制:65535 KB 难度:2 描述 小M在上课时有些得意忘形,老师想出道题目难住他.小M听说是求因子和,还是非常得意,但是看完题目是求A的B ...
- 因子和(luoguP1593)(等比数列求和+逆元)
输入两个正整数\(a\)和\(b\),求\(a\cdot b\)的因子和.结果太大,只要输出它对9901的余数. Input 仅一行,为两个正整数\(a\)和\(b\)(\(0≤a,b≤5000000 ...
- [转]Laplace算子和Laplacian矩阵
1 Laplace算子的物理意义 Laplace算子的定义为梯度的散度. 在Cartesian坐标系下也可表示为: 或者,它是Hessian矩阵的迹: 以热传导方程为例,因为热流与温度的梯度成正比,那 ...
- 七夕节---hdu1215(打表求因子和)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1215 给你一个数n(1<=n<=50w)求n的所有因子和, 由于n的范围比较大,所以要采用 ...
随机推荐
- shell 终端常用插件
参考链接: http://get.ftqq.com/992.get 1.zsh 2.autojump 3.apt-get install lamp-server^ 4.tldr 5.tree (显示目 ...
- python - class类 (三) 类的组合
类的组合: #组合 class A1(): def pr(self): return 'a1' class A2(): def pr(self): return 'a2' class A3(): de ...
- 12章 搜索框架ElasticSearch介绍和整合SpringBoot 4节课
1.搜索引擎知识和搜索框架elasticsearch基本介绍 简介:通过京东电商 介绍什么是搜索引擎,和开源搜索框架ElasticSearch6.x新特性介绍 前言:介绍ES的主要特点和使用场 ...
- ROS Kinetic Install on Debian 9
Not Succesed! 1. 配置源$ sudo sh -c 'echo "deb http://packages.ros.org/ros/ubuntu $(lsb_release - ...
- Child Process模块
目录 exec() execSync() execFile() spawn() fork() send() 参考链接 child_process模块用于新建子进程.子进程的运行结果储存在系统缓存之中( ...
- 019_nginx upstream中keepalive参数
一. TCP/IP State=>SYN_RECV,LISTEN,TIME_WAIT,ESTABLISHED,STREAM,CONNECTED,CLOSING (1)前端Nginx大量报no l ...
- php中相对路径和绝对路径如何使用(详解)
目录 一.总结 一句话总结: 1.php中用用“/”表示根目录么? 2.什么符号表示当前目录(asp,jsp,php都一样)? 3.php中如何使用$_SERVER['DOCUMENT_ROOT']做 ...
- 【hadoop】python通过hdfs模块读hdfs数据
hdfs官网:http://hdfscli.readthedocs.io/en/latest/api.html 一个非常好的博客:http://blog.csdn.net/gamer_gyt/arti ...
- linux下的文件结构
linux下的文件结构,看看每个文件夹都是干吗用的/bin 二进制可执行命令/dev 设备特殊文件/etc 系统管理和配置文件/etc/rc.d 启动的配置文件和脚本/home 用户主目录的基点,比如 ...
- python+selenium二:定位方式
# 八种单数定位方式:elementfrom selenium import webdriverimport time driver = webdriver.Firefox()time.sleep(2 ...