P1593 因子和
新算法:
#define ni 逆元
先质因数分解,
(1+p1^1+p1^2...p1^x)*(1+p2^1+p2^2...p2^x)
然后套等比数列公式就可以了。

 #include<iostream>
#include<cstdio>
#include<queue>
#include<algorithm>
#include<cmath>
#include<ctime>
#include<set>
#define mod 9901
#include<cstring>
#define inf long long_MAX
#define For(i,a,b) for(register long long i=a;i<=b;i++)
#define p(a) putchar(a)
#define g() getchar()
//by war
//2017.10.27
using namespace std;
long long num,b;
struct node
{
long long cnt;
long long p;
}a[];//40M
long long prime[];//40M
long long cnt;
long long tot;
bool vis[];
long long ans; void in(long long &x)
{
long long y=;
char c=g();x=;
while(c<''||c>'')
{
if(c=='-')
y=-;
c=g();
}
while(c<=''&&c>='')x=x*+c-'',c=g();
x*=y;
}
void o(long long x)
{
if(x<)
{
p('-');
x=-x;
}
if(x>)o(x/);
p(x%+'');
} void Euler(long long x)
{
For(i,,x)
{
if(!vis[i])prime[++cnt]=i;
for(register long long j=;j<=cnt&&prime[j]*i<=x;j++)
{
vis[prime[j]*i]=true;
if(i%prime[j]==)
break;
}
}
} void resolve(long long x)
{
For(i,,cnt)
{
if(x%prime[i]==)
{
a[++tot].p=prime[i];
while(x%prime[i]==)
{
a[tot].cnt++;
x/=prime[i];
}
}
}
if(x>)
{
a[++tot].p=x;
a[tot].cnt++;
}
} long long ksm(long long a,long long b)
{
if(b==)
return ;
while(b%==)
{
a=(a*a)%mod;
b>>=;
}
long long r=;
while(b>)
{
if(b%==)
r=(r*a)%mod;
a=(a*a)%mod;
b>>=;
}
return r%mod;
} void exgcd(long long a,long long b,long long &x,long long &y)
{
if(!b)
{
x=;
y=;
return;
}
exgcd(b,a%b,x,y);
long long temp=x;
x=y;
y=temp-(a/b)*y;
} long long series(long long q,long long n)
{
long long fz=ksm(q,n)-;
long long x,y,b;
exgcd(q-,mod,x,y);
long long ni=x;
ni=(ni%mod+mod)%mod;
return (fz*ni%mod+mod)%mod;
} int main()
{
in(num),in(b);
Euler(sqrt(num));
resolve(num);
ans=;
For(i,,tot)
ans=ans*series(a[i].p,a[i].cnt*b+)%mod;
o(ans%mod);
return ;
}

P1593 因子和的更多相关文章

  1. 洛谷P1593 因子和

    题目描述 输入两个正整数a和b,求a^b的因子和.结果太大,只要输出它对9901的余数. 输入输出格式 输入格式: 仅一行,为两个正整数a和b(0≤a,b≤50000000). 输出格式: a^b的因 ...

  2. 洛谷 P1593 因子和

    https://www.luogu.org/problemnew/show/P1593#sub 利用约数和定理:可以去看一下公式第13条 然后这个题目的话,要求$a^b$,那么我们首先可以先将a分解然 ...

  3. luogu P1593 因子和

    不要吐槽博主总做这些数论氵题 首先我们看到这种因数问题,果断质因数分解 所以当前数\(a=p_1^{k_1}*p_2^{k_2}...*p_m^{k_m}\) 可得\(a^b=p_1^{k_1*b}* ...

  4. Uva 11395 Sigma Function (因子和)

    http://acm.hust.edu.cn/vjudge/contest/view.action?cid=109329#problem/C   题目在文末 题意:1~n (n:1~1012)中,因子 ...

  5. LightOj 1098 - A New Function(求1-n所有数的因子和)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1098 题意:给你一个数n (0 ≤ n ≤ 2 * 109),求n以内所有数的因子和, ...

  6. nylg 小M的因子和

    小M的因子和 时间限制:1000 ms  |  内存限制:65535 KB 难度:2   描述 小M在上课时有些得意忘形,老师想出道题目难住他.小M听说是求因子和,还是非常得意,但是看完题目是求A的B ...

  7. 因子和(luoguP1593)(等比数列求和+逆元)

    输入两个正整数\(a\)和\(b\),求\(a\cdot b\)的因子和.结果太大,只要输出它对9901的余数. Input 仅一行,为两个正整数\(a\)和\(b\)(\(0≤a,b≤5000000 ...

  8. [转]Laplace算子和Laplacian矩阵

    1 Laplace算子的物理意义 Laplace算子的定义为梯度的散度. 在Cartesian坐标系下也可表示为: 或者,它是Hessian矩阵的迹: 以热传导方程为例,因为热流与温度的梯度成正比,那 ...

  9. 七夕节---hdu1215(打表求因子和)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1215 给你一个数n(1<=n<=50w)求n的所有因子和, 由于n的范围比较大,所以要采用 ...

随机推荐

  1. 使用PowerMockito和Mockito进行模拟测试,包括静态方法测试,私有方法测试等,以及方法执行的坑或者模拟不成功解决

    依赖:这个很重要,不同版本用法也有点区别: <dependency> <groupId>org.mockito</groupId> <artifactId&g ...

  2. vc++调用exe获取输出信息

    目的 调用命令行程序,返回结果. 思路 把命令行结果输入到管道中,exe的输出信息都存在了strOutput这个变量里. 实现代码 CString strCmd = L"yara64.exe ...

  3. 【CTF REVERSE】ctf02-查找字符串

    1.前言 公司大拿给写的一个CTF逆向程序,提升我们组内人员的水平. 基于对话框MFC框架开发,使用EDIT控制特性隐藏Flag,可借助spy4win之类窗体工具找出Flag. 程序加UPX壳,已对壳 ...

  4. 【黑客免杀攻防】读书笔记6 - PE文件知识在免杀中的应用

    0x1 PE文件与免杀思路 基于PE文件结构知识的免杀技术主要用于对抗启发式扫描. 通过修改PE文件中的一些关键点来达到欺骗反病毒软件的目的. 修改区段名 1.1 移动PE文件头位置免杀 工具:PeC ...

  5. Generative Adversarial Nets(原生GAN学习)

    学习总结于国立台湾大学 :李宏毅老师 Author: Ian Goodfellow • Paper: https://arxiv.org/abs/1701.00160 • Video: https:/ ...

  6. c# 取本地ip地址

    public static System.Net.IPAddress[] GetIpAddress() { string hostName = System.Net.Dns.GetHostName() ...

  7. MVC 带扩展名的路由无法访问

    在MVC中,路由是必不可少的,而且MVC对Url的重写非常方便,只需要在路由中配置相应的规则即可.假如我们需要给信息详情页配置路由,代码如下: routes.MapRoute( name: " ...

  8. Visual Studio 2017 + Python3.6安装scipy库

    Windows10下安装scipy很麻烦,直接在命令行下使用pip install scipy无法安装,但可以借助VS2017的集成环境来安装. (1)首先在Visual Studio Install ...

  9. 有pom.xml文件但是无法用maven构建问题

    java项目转maven项目,要注意pom.xml文件中是否定义了JDK的版本,要与环境保持一致.项目,右键,configure,选择转换为maven项目即可.转换后,有三个位置需要注意: 1.Jav ...

  10. ubuntu数据库迁移

    环境:ubuntu16.04 简介:本教程演示如何从旧数据库服务器服转移到另一个新服务器. 场景:假设你有自己的云服务器安装了WordPress站点,你为了更多的内存和处理能力想升级到新的服务器. 操 ...