[POI2007]ZAP-Queries (莫比乌斯反演+整除分块)
[POI2007]ZAP-Queries
$ solution: $
唉,数论实在有点烂了,昨天还会的,今天就不会了,周末刚证明的,今天全忘了,还不如早点写好题解。
这题首先我们可以列出来答案就是:
$ ans=\sum_{i=1}{a}{\sum_{j=1}{b}{[gcd(i,j)==d]}} $
我们发现后面那个东西(只有 $ gcd(i,j)d $ 时才为一)跟莫比乌斯很像,莫比乌斯是(只有 $ n $ 1 才为一),所以我们再尝试转化一下(把d转化成1):
$ ans=\sum_{i=1}{\frac{a}{d}}{\sum_{j=1}{\frac{b}{d}}{[gcd(i,j)==1]}} $
于是我们就可以把后面那个东西用莫比乌斯函数的第一条性质转换成这样:
$ ans=\sum_{i=1}{\frac{a}{d}}{\sum_{j=1}{\frac{b}{d}}{\sum_{k|gcd(i,j)}{\mu(k)}}} $
但是这样显然还不够,我们想办法把莫比乌斯的式子挪到前面去:
$ ans=\sum_{k}{min(a,b)}{\mu(k)}{\sum_{i=1}{\frac{a}{d}}{\sum_{j=1}^{\frac{b}{d}}{[k|gcd(i,j)]}}} $
这个其实就相当于我们从小到大枚举k,但是我们是从上面那个式子转化过来的,所以必须满足 $ [k|gcd(i,j)] $ 这个条件。好了,现在我们肉眼观察一下,发现如下的东西:
$ {\sum_{i=1}{\frac{a}{d}}{\sum_{j=1}{\frac{b}{d}}{[k|gcd(i,j)]}}}=\lfloor \frac{\lfloor \frac{a}{d} \rfloor}{k} \rfloor \times \lfloor \frac{\lfloor \frac{b}{d} \rfloor}{k} \rfloor=\lfloor \frac{a}{d\times k} \rfloor \times \lfloor \frac{b}{d\times k} \rfloor $
$ ans=\sum_{k}^{min(a,b)}{\mu(k)\times \lfloor \frac{a}{d\times k} \rfloor \times \lfloor \frac{b}{d\times k} \rfloor} $
然后我们发现这样子的复杂度是 $ O(min(a,b)) $ 的,然而它的询问次数太多。于是出现了一个很奇妙的东西:整除分块(又叫数论分块)。举个栗子:
$ \frac{10}{1}=10 $
$ \frac{10}{2}=5 $
$ \frac{10}{3}=3 $
$ \frac{10}{4}=\frac{10}{5}=2 $
$ \frac{10}{6}=\frac{10}{7}=\frac{10}{8}=\frac{10}{9}=\frac{10}{10}=1 $
我们发现分子相同分母越大,则出现相同结果的概率越高,所以我们可以一次求出某一段相同结果的左端点和右端点(假设这一段的结果都为y,则这一段的最右端就是用分子除以y得到的值),从而使算法效率变高,这就是整除分块。
$ code: $
#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set>
#define ll long long
#define db double
#define inf 0x7fffffff
#define rg register int
using namespace std;
int Q;
int pr[50005];
int mu[50005];
bool use[50005];
inline int min(const rg &x,const rg &y){
if(x<y)return x; else return y;
}
inline int qr(){
register char ch; register bool sign=0; rg res=0;
while(!isdigit(ch=getchar())) if(ch=='-')sign=1;
while(isdigit(ch)) res=res*10+(ch^48),ch=getchar();
return sign?-res:res;
}
inline void get_mu(int x){
rg t=0; mu[1]=1;
for(rg i=2;i<=x;++i){
if(!use[i])mu[i]=-1,pr[++t]=i;
for(rg j=1;j<=t;++j){
if(i*pr[j]>x)break;
use[i*pr[j]]=1;
if(!(i%pr[j]))break;
else mu[i*pr[j]]=-mu[i];
}
}
for(rg i=2;i<=x;++i) mu[i]+=mu[i-1];
}
int main(){
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
Q=qr();
get_mu(50000);
while(Q--){
rg a=qr(),b=qr(),k=qr();
a/=k; b/=k;
rg r,n=min(a,b),ans=0;
for(rg l=1;l<=n;l=r+1){
r=min(a/(a/l),b/(b/l));
ans+=((a/l)*(b/l)*(mu[r]-mu[l-1]));
}printf("%d\n",ans);
}
return 0;
}
[POI2007]ZAP-Queries (莫比乌斯反演+整除分块)的更多相关文章
- [P4450] 双亲数 - 莫比乌斯反演,整除分块
模板题-- \[\sum\limits_{i=1}^a\sum\limits_{j=1}^b[(i,j)=k] = \sum\limits_{i=1}^a\sum\limits_{j=1}^b[k|i ...
- Bzoj1101: [POI2007]Zap 莫比乌斯反演+整除分块
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 莫比乌斯反演 1101: [POI2007]Zap 设 \(f(i)\) 表示 \(( ...
- 莫比乌斯反演&整除分块学习笔记
整除分块 用于计算$\sum_{i=1}^n f(\lfloor{n/i} \rfloor)*i$之类的函数 整除的话其实很多函数值是一样的,对于每一块一样的商集中处理即可 若一个商的左边界为l,则右 ...
- 洛谷 P2257 - YY的GCD(莫比乌斯反演+整除分块)
题面传送门 题意: 求满足 \(1 \leq x \leq n\),\(1 \leq y \leq m\),\(\gcd(x,y)\) 为质数的数对 \((x,y)\) 的个数. \(T\) 组询问. ...
- 【BZOJ1101】[POI2007] Zap(莫比乌斯反演)
点此看题面 大致题意: 求\(\sum_{x=1}^N\sum_{y=1}^M[gcd(x,y)==d]\). 一道类似的题目 推荐先去做一下这道题:[洛谷2257]YY的GCD,来初步了解一下莫比乌 ...
- 洛谷 - P2257 - YY的GCD - 莫比乌斯反演 - 整除分块
https://www.luogu.org/problemnew/show/P2257 求 \(n,m\) 中 \(gcd(i,j)==p\) 的数对的个数 求 $\sum\limits_p \sum ...
- [国家集训队] Crash的数字表格 - 莫比乌斯反演,整除分块
考虑到\(lcm(i,j)=\frac{ij}{gcd(i,j)}\) \(\sum_{i=1}^n\sum_{j=1}^m\frac{ij}{gcd(i,j)}\) \(\sum_{d=1}^{n} ...
- 洛谷 P5518 - [MtOI2019]幽灵乐团 / 莫比乌斯反演基础练习题(莫比乌斯反演+整除分块)
洛谷题面传送门 一道究极恶心的毒瘤六合一题,式子推了我满满两面 A4 纸-- 首先我们可以将式子拆成: \[ans=\prod\limits_{i=1}^A\prod\limits_{j=1}^B\p ...
- P2568 莫比乌斯反演+整除分块
#include<bits/stdc++.h> #define LL long long using namespace std; ; bool vis[maxn]; int prime[ ...
随机推荐
- BZOJ2822[AHOI2012]树屋阶梯——卡特兰数+高精度
题目描述 暑假期间,小龙报名了一个模拟野外生存作战训练班来锻炼体魄,训练的第一个晚上,教官就给他们出了个难题.由于地上露营湿气重,必须选择在高处的树屋露营.小龙分配的树屋建立在一颗高度为N+1尺(N为 ...
- BZOJ5093 图的价值(NTT+斯特林数)
显然每个点会提供相同的贡献.于是现在只考虑1号点的贡献.若其度数为i,则在2~n号点选i个连上,剩下的边随便连,这样可以算出答案为 这个式子可以O(n)计算.发现k比较小,于是考虑如何将这个式子化为与 ...
- Django实现websocket完成实时通讯,聊天室,在线客服等
一 什么是Websocket WebSocket是一种在单个TCP连接上进行全双工通信的协议 WebSocket使得客户端和服务器之间的数据交换变得更加简单,允许服务端主动向客户端推送数据.在WebS ...
- bzoj 2202 [HNOI2010] Bounce 弹飞绵羊(分块)
链接:https://www.lydsy.com/JudgeOnline/problem.php?id=2002 思路:和之前那道树分块的题很像,只不过那道是在树上,这道简单些在序列上 还是维护两个数 ...
- CF528D Fuzzy Search 【NTT】
题目链接 CF528D 题解 可以预处理出\(S\)每个位置能匹配哪些字符 对每种字符 构造两个序列 如果\(S[i]\)可以匹配该字符,则该位置为\(0\),否则为\(1\) 如果\(T[i]\)可 ...
- 洛谷 P2587 [ZJOI2008]泡泡堂 解题报告
P2587 [ZJOI2008]泡泡堂 题目描述 第XXXX届NOI期间,为了加强各省选手之间的交流,组委会决定组织一场省际电子竞技大赛,每一个省的代表队由n名选手组成,比赛的项目是老少咸宜的网络游戏 ...
- 【bzoj4818】 Sdoi2017—序列计数
http://www.lydsy.com/JudgeOnline/problem.php?id=4818 (题目链接) 题意 一个长度为$n$的序列,每个元素是不超过$m$的正整数,且这$n$个数的和 ...
- 洛谷P3622 动物园
题意:给定一个n个元素的圈,m个条件.满足一个条件需要选某些元素或不选另一些元素. 问最多能满足多少条件.每个条件所关联的元素,最远的两个距离不会超过5. 解:想了半天...... 首先能想到断环成链 ...
- zTree重命名节点时,操作的那个dom(类似input框那个)怎么写
<script type="text/javascript"> //tree的编辑节点的方法 ztree.editName(nodeNew[0]); /// $(&qu ...
- 求矩形面积(问题来自PythonTip)
描述: 已知矩形长a,宽b,输出其面积和周长,面积和周长以一个空格隔开. 例如:a = 3, b = 8 则输出:24 22 方法一: a=int(input('')) //input返回的是字符串类 ...