[POI2007]ZAP-Queries



$ solution: $

唉,数论实在有点烂了,昨天还会的,今天就不会了,周末刚证明的,今天全忘了,还不如早点写好题解。

这题首先我们可以列出来答案就是:

$ ans=\sum_{i=1}{a}{\sum_{j=1}{b}{[gcd(i,j)==d]}} $

我们发现后面那个东西(只有 $ gcd(i,j)d $ 时才为一)跟莫比乌斯很像,莫比乌斯是(只有 $ n $ 1 才为一),所以我们再尝试转化一下(把d转化成1):

$ ans=\sum_{i=1}{\frac{a}{d}}{\sum_{j=1}{\frac{b}{d}}{[gcd(i,j)==1]}} $

于是我们就可以把后面那个东西用莫比乌斯函数的第一条性质转换成这样:

$ ans=\sum_{i=1}{\frac{a}{d}}{\sum_{j=1}{\frac{b}{d}}{\sum_{k|gcd(i,j)}{\mu(k)}}} $

但是这样显然还不够,我们想办法把莫比乌斯的式子挪到前面去:

$ ans=\sum_{k}{min(a,b)}{\mu(k)}{\sum_{i=1}{\frac{a}{d}}{\sum_{j=1}^{\frac{b}{d}}{[k|gcd(i,j)]}}} $

这个其实就相当于我们从小到大枚举k,但是我们是从上面那个式子转化过来的,所以必须满足 $ [k|gcd(i,j)] $ 这个条件。好了,现在我们肉眼观察一下,发现如下的东西:

$ {\sum_{i=1}{\frac{a}{d}}{\sum_{j=1}{\frac{b}{d}}{[k|gcd(i,j)]}}}=\lfloor \frac{\lfloor \frac{a}{d} \rfloor}{k} \rfloor \times \lfloor \frac{\lfloor \frac{b}{d} \rfloor}{k} \rfloor=\lfloor \frac{a}{d\times k} \rfloor \times \lfloor \frac{b}{d\times k} \rfloor $

$ ans=\sum_{k}^{min(a,b)}{\mu(k)\times \lfloor \frac{a}{d\times k} \rfloor \times \lfloor \frac{b}{d\times k} \rfloor} $

然后我们发现这样子的复杂度是 $ O(min(a,b)) $ 的,然而它的询问次数太多。于是出现了一个很奇妙的东西:整除分块(又叫数论分块)。举个栗子:

$ \frac{10}{1}=10 $

$ \frac{10}{2}=5 $

$ \frac{10}{3}=3 $

$ \frac{10}{4}=\frac{10}{5}=2 $

$ \frac{10}{6}=\frac{10}{7}=\frac{10}{8}=\frac{10}{9}=\frac{10}{10}=1 $

我们发现分子相同分母越大,则出现相同结果的概率越高,所以我们可以一次求出某一段相同结果的左端点和右端点(假设这一段的结果都为y,则这一段的最右端就是用分子除以y得到的值),从而使算法效率变高,这就是整除分块。



$ code: $

#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm>
#include<cstring>
#include<cstdlib>
#include<ctime>
#include<cmath>
#include<vector>
#include<queue>
#include<map>
#include<set> #define ll long long
#define db double
#define inf 0x7fffffff
#define rg register int using namespace std; int Q;
int pr[50005];
int mu[50005];
bool use[50005]; inline int min(const rg &x,const rg &y){
if(x<y)return x; else return y;
} inline int qr(){
register char ch; register bool sign=0; rg res=0;
while(!isdigit(ch=getchar())) if(ch=='-')sign=1;
while(isdigit(ch)) res=res*10+(ch^48),ch=getchar();
return sign?-res:res;
} inline void get_mu(int x){
rg t=0; mu[1]=1;
for(rg i=2;i<=x;++i){
if(!use[i])mu[i]=-1,pr[++t]=i;
for(rg j=1;j<=t;++j){
if(i*pr[j]>x)break;
use[i*pr[j]]=1;
if(!(i%pr[j]))break;
else mu[i*pr[j]]=-mu[i];
}
}
for(rg i=2;i<=x;++i) mu[i]+=mu[i-1];
} int main(){
//freopen(".in","r",stdin);
//freopen(".out","w",stdout);
Q=qr();
get_mu(50000);
while(Q--){
rg a=qr(),b=qr(),k=qr();
a/=k; b/=k;
rg r,n=min(a,b),ans=0;
for(rg l=1;l<=n;l=r+1){
r=min(a/(a/l),b/(b/l));
ans+=((a/l)*(b/l)*(mu[r]-mu[l-1]));
}printf("%d\n",ans);
}
return 0;
}

[POI2007]ZAP-Queries (莫比乌斯反演+整除分块)的更多相关文章

  1. [P4450] 双亲数 - 莫比乌斯反演,整除分块

    模板题-- \[\sum\limits_{i=1}^a\sum\limits_{j=1}^b[(i,j)=k] = \sum\limits_{i=1}^a\sum\limits_{j=1}^b[k|i ...

  2. Bzoj1101: [POI2007]Zap 莫比乌斯反演+整除分块

    题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1101 莫比乌斯反演 1101: [POI2007]Zap 设 \(f(i)\) 表示 \(( ...

  3. 莫比乌斯反演&整除分块学习笔记

    整除分块 用于计算$\sum_{i=1}^n f(\lfloor{n/i} \rfloor)*i$之类的函数 整除的话其实很多函数值是一样的,对于每一块一样的商集中处理即可 若一个商的左边界为l,则右 ...

  4. 洛谷 P2257 - YY的GCD(莫比乌斯反演+整除分块)

    题面传送门 题意: 求满足 \(1 \leq x \leq n\),\(1 \leq y \leq m\),\(\gcd(x,y)\) 为质数的数对 \((x,y)\) 的个数. \(T\) 组询问. ...

  5. 【BZOJ1101】[POI2007] Zap(莫比乌斯反演)

    点此看题面 大致题意: 求\(\sum_{x=1}^N\sum_{y=1}^M[gcd(x,y)==d]\). 一道类似的题目 推荐先去做一下这道题:[洛谷2257]YY的GCD,来初步了解一下莫比乌 ...

  6. 洛谷 - P2257 - YY的GCD - 莫比乌斯反演 - 整除分块

    https://www.luogu.org/problemnew/show/P2257 求 \(n,m\) 中 \(gcd(i,j)==p\) 的数对的个数 求 $\sum\limits_p \sum ...

  7. [国家集训队] Crash的数字表格 - 莫比乌斯反演,整除分块

    考虑到\(lcm(i,j)=\frac{ij}{gcd(i,j)}\) \(\sum_{i=1}^n\sum_{j=1}^m\frac{ij}{gcd(i,j)}\) \(\sum_{d=1}^{n} ...

  8. 洛谷 P5518 - [MtOI2019]幽灵乐团 / 莫比乌斯反演基础练习题(莫比乌斯反演+整除分块)

    洛谷题面传送门 一道究极恶心的毒瘤六合一题,式子推了我满满两面 A4 纸-- 首先我们可以将式子拆成: \[ans=\prod\limits_{i=1}^A\prod\limits_{j=1}^B\p ...

  9. P2568 莫比乌斯反演+整除分块

    #include<bits/stdc++.h> #define LL long long using namespace std; ; bool vis[maxn]; int prime[ ...

随机推荐

  1. 如何取消浏览器护眼色 Lodop打印图片有窗口颜色的边框

    Lodop打印图片出现了边框,然而通常情况下是没有边框的,由于Lodop是基于本机的ie进行解析的,和IE的设置有关.用户的电脑和习惯千差万别,有人喜欢给浏览器加上护眼色,而这一个行为可能导致Lodo ...

  2. 洛谷P3588 [POI2015]PUS

    题面 sol:说了是线段树优化建图的模板... 就是把一整个区间的点连到一个点上,然后用那个点来连需要连一整个区间的点就可以了,就把边的条数优化成n*log(n)了 #include <queu ...

  3. python系列-2 正则表达式资料

  4. BZOJ1093 ZJOI2007最大半连通子图(缩点+dp)

    发现所谓半连通子图就是缩点后的一条链之后就是个模板题了.注意缩点后的重边.写了1h+真是没什么救了. #include<iostream> #include<cstdio> # ...

  5. MT【231】棋子方法数

    设有5枚无区别的棋子放在如图$5*5$的棋盘的小方格中,放棋子的规则是每行每列放且仅放一个棋子,同时,不允许放在黑方格内,则共有______ 方法. 答案:5的错排数44.第一行的数不放第二列(相当于 ...

  6. Android 视频 教程 源码 电子书 网址

    资源名称 资源地址 下载量 好评率8天快速掌握Android视频教程67集(附源码)http://down.51cto.com/zt/2197 32157Android开发入门之实战技巧和源码 htt ...

  7. BZOJ3730 震波 | 动态点分治

    #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> # ...

  8. HGOI 20190217 题解

    /* for me,开训第一天 /beacuse 文化课太差被抓去补文化课了... 看一眼题 : AK局? 但是,Wa on test #10 in problem C 290! (就差那么一咪咪) ...

  9. JAVA 泛型方法 和 静态方法泛型

    /* //  泛型方法和静态方法泛型 泛型类定义的泛型 在整个类中有效 如果被方法使用 那么泛型类的对象明确要操作的具体类型后,所有要操作的类型就已经固定 为了让不同方法可以操作不同类型  而且类型还 ...

  10. BSGS&EXBSGS 大手拉小手,大步小步走

    大步小步走算法处理这样的问题: A^x = B (mod C) 求满足条件的最小的x(可能无解) 其中,A/B/C都可以是很大的数(long long以内) 先分类考虑一下: 当(A,C)==1 即A ...