luogu P4161 [SCOI2009]游戏
我们发现整个大置换中,会由若干形如\((a_1\rightarrow a_2,a_2\rightarrow a_3,...a_{n-1}\rightarrow a_n,a_n\rightarrow a_1)\)的循环置换组成,记某个循环置换中元素个数为\(m_i\)而整个置换的循环节大小为\(lcm(m_1,m_2,...)\),那么问题转化成把一个数\(n\)拆成若干整数之和,问拆出来的整数的\(lcm\)有多少种
把\([1,n]\)的质数筛出来,然后dfs,从前往后考虑质数\(p_i\),每次从剩余的数中减去\({p_i}^k\),假设某个时刻表示的数为\(s\),那么减去\({p_i}^k\)后就能表示\(s*{p_i}^k\),这样子计算是不重不漏的,但是无法通过此题(方案数为\(long\ long\)级别)
考虑dp,设\(f_i\)为\(n=i\)时的答案,然后依次枚举质数,因为当前考虑的质数之前没考虑,所以\(f_i\)可以从\(f_{i-p_j},f_{i-{p_j}^2},f_{i-{p_j}^3}...\)转移过来,这其实就是个背包
详见代码
#include<bits/stdc++.h>
#define LL long long
#define il inline
#define re register
#define db double
#define eps (1e-5)
using namespace std;
il LL rd()
{
LL x=0,w=1;char ch=0;
while(ch<'0'||ch>'9') {if(ch=='-') w=-1;ch=getchar();}
while(ch>='0'&&ch<='9') {x=(x<<3)+(x<<1)+(ch^48);ch=getchar();}
return x*w;
}
int prm[200],tt,n;
char vis[1010];
il void init()
{
for(int i=2;i<=n;i++)
{
if(!vis[i]) prm[++tt]=i;
for(int j=1;j<=tt&&i*prm[j]<=n;j++)
{
vis[i*prm[j]]=true;
if(i%prm[j]==0) break;
}
}
}
LL f[1010];
/*void dfs(int o,int s)
{
if(o>tt||s<prm[o]) return;
dfs(o+1,s);
int xx=prm[o];
while(s>=xx)
{
++ans;
dfs(o+1,s-xx);
xx*=prm[o];
}
}*/
int main()
{
n=rd();
init();
for(int i=0;i<=n;i++) f[i]=1;
for(int i=1;i<=tt;i++)
for(int j=n;j>=0;j--)
for(int k=prm[i];j-k>=0;k*=prm[i])
f[j]+=f[j-k];
printf("%lld\n",f[n]);
return 0;
}
luogu P4161 [SCOI2009]游戏的更多相关文章
- Luogu P4161 [SCOI2009]游戏 数论+DP
ywy神犇太巨辣!!一下就明白了!! 题意:求$lcm(a_1,a_2,...,a_k)$的种类,其中$\Sigma\space a_i <=n$,$a_i$相当于环长 此处的$DP$,相当于是 ...
- LG P4161 [SCOI2009]游戏/LG P6280 [USACO20OPEN]Exercise G
Description(P4161) windy学会了一种游戏. 对于1到N这N个数字,都有唯一且不同的1到N的数字与之对应. 最开始windy把数字按顺序1,2,3,……,N写一排在纸上. 然后再在 ...
- P4161 [SCOI2009]游戏
传送门 首先这题的本质就是把\(n\)分成若干个数的和,求他们的\(lcm\)有多少种情况 然后据说有这么个结论:若\(p_1^{c_1}+p_2^{c_2}+...+p_m^{c_m}\leq n\ ...
- SCOI2009游戏
1025: [SCOI2009]游戏 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1065 Solved: 673[Submit][Status] ...
- BZOJ 1025 [SCOI2009]游戏
1025: [SCOI2009]游戏 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1533 Solved: 964[Submit][Status][ ...
- BZOJ 1025: [SCOI2009]游戏( 背包dp )
显然题目要求长度为n的置换中各个循环长度的lcm有多少种情况. 判断一个数m是否是满足题意的lcm. m = ∏ piai, 当∑piai ≤ n时是满足题意的. 最简单我们令循环长度分别为piai, ...
- luogu P2657 [SCOI2009]windy数 数位dp 记忆化搜索
题目链接 luogu P2657 [SCOI2009]windy数 题解 我有了一种所有数位dp都能用记忆话搜索水的错觉 代码 #include<cstdio> #include<a ...
- 【BZOJ1025】[SCOI2009]游戏(动态规划)
[BZOJ1025][SCOI2009]游戏(动态规划) 题面 BZOJ 洛谷 题解 显然就是一个个的置换,那么所谓的行数就是所有循环的大小的\(lcm+1\). 问题等价于把\(n\)拆分成若干个数 ...
- bzoj千题计划116:bzoj1025: [SCOI2009]游戏
http://www.lydsy.com/JudgeOnline/problem.php?id=1025 题目转化: 将n分为任意段,设每段的长度分别为x1,x2,…… 求lcm(xi)的个数 有一个 ...
随机推荐
- QueryParser 是对一段话进行分词的 用于收集客户端发来的
- JSP 和 Servlet 的工作原理和生命周期
JSP的英文名叫Java Server Pages,翻译为中文是Java服务器页面的意思,其底层就是一个简化的Servlet设计,是由sum公司主导参与建立的一种动态网页技术标准.Servlet 就是 ...
- BZOJ5337 [TJOI2018] 碱基序列 【哈希】【动态规划】
题目分析: 这道题的难点在于要取模,而题面没有写. 容易想到一个O(1E7)的dp.KMP或者哈希得到相关位置然后对于相关位置判断上一个位置有多少种情况. 代码: #include<bits/s ...
- BZOJ4870 [六省联考2017] 组合数问题 【快速幂】
题目分析: 构造f[nk][r]表示题目中要求的东西.容易发现递推公式f[nk][r]=f[nk-1][r]+f[nk-1][(r-1)%k].矩阵快速幂可以优化,时间复杂度O(k^3logn). 代 ...
- hdu 3397 Sequence operation (线段树 区间合并 多重标记)
链接:http://acm.hdu.edu.cn/showproblem.php?pid=3397 题意: 给你一串01串,有5种操作 0. 区间全部变为0 1.区间全部变为1 2.区间异或 3.询问 ...
- Educational Codeforces Round 25 A,B,C,D
A:链接:http://codeforces.com/contest/825/problem/A 解题思路: 一开始以为是个进制转换后面发现是我想多了,就是统计有多少个1然后碰到0输出就行,没看清题意 ...
- BZOJ5312 冒险(势能线段树)
BZOJ题目传送门 表示蒟蒻并不能一眼看出来这是个势能线段树. 不过仔细想想也并非难以理解,感性理解一下,在一个区间里又与又或,那么本来不相同的位也会渐渐相同,线段树每个叶子节点最多修改\(\log ...
- 教你如何开启/关闭ubuntu防火墙
目录 [隐藏] 1 安装方法 2 使用方法 3 推荐设置 4 详细使用说明 安装方法 sudo apt-get install ufw 当然,这是有图形界面的(比较简陋),在新立得里搜索gufw试 ...
- matplotlib 刻度,坐标轴不可见
plt.gray():只有黑白两色,没有中间的渐进色 1. 关闭坐标刻度 plt.xticks([]) plt.yticks([]) 关闭坐标轴: plt.axis('off') 注意,类似的这些操作 ...
- wechat 网页版通信全过程
想要记录总结一下自己在这个小项目中所遇到的坑,以及解决问题的思路. 首先我觉得这个小项目挺有实际市场的,市场上有一定的需求量,这个就是驱动力吧.这个小项目的关键点是wechat网页版通信全过程,讲真挺 ...