poj2992 阶乘分解
/*
将C(n,k)质因数分解,然后约束个数按公式计算
*/
#include<iostream>
#include<cstring>
#include<cstdio>
#include<cmath>
using namespace std;
#define ll long long int v[],prime[],m,c[],p[];
void init(int n){
memset(prime,,sizeof prime);
memset(v,,sizeof v);
m=;
for(int i=;i<=n;i++){
if(v[i]==){
v[i]=i;
prime[++m]=i;
}
for(int j=;j<=m;j++){
if(prime[j]>v[i] || prime[j]*i>n) break;
v[i*prime[j]]=prime[j];
}
}
}
int cal(int p,int n){
int ret=,tmp=p;
while(tmp<=n){
ret+=n/tmp;
tmp*=p;
}
return ret;
} int main(){
int n,k;
init();
while(scanf("%d%d",&n,&k)==){
memset(c,,sizeof c);
memset(p,,sizeof p);
ll ans=;
for(int i=;i<=m;i++){
if(prime[i]>n) break;
c[i]+=cal(prime[i],n);
}
for(int i=;i<=m;i++){
if(prime[i]>n-k)break;
c[i]-=cal(prime[i],n-k);
}
for(int i=;i<=m;i++){
if(prime[i]>k) break;
c[i]-=cal(prime[i],k);
}
for(int i=;i<=m;i++)
if(c[i]) ans*=(c[i]+);
printf("%lld\n",ans);
}
}
poj2992 阶乘分解的更多相关文章
- 将n(0<=n<=10000)的阶乘分解质因数,求其中有多少个m
给定两个数m,n,其中m是一个素数. 将n(0<=n<=10000)的阶乘分解质因数,求其中有多少个m. 输入 第一行是一个整数s(0<s<=100),表示测试数据的组数 随后 ...
- 数论-质数 poj2689,阶乘分解,求阶乘的尾零hdu1124, 求尾零为x的最小阶乘
/* 要求出[1,R]之间的质数会超时,但是要判断[L,R]之间的数是否是素数却不用筛到R 因为要一个合数n的最大质因子不会超过sqrt(n) 所以只要将[2,sqrt(R)]之间的素数筛出来,再用这 ...
- luogu1445 [violet]樱花 阶乘分解
题目大意 求方程$$\frac{1}{x}+\frac{1}{y}=\frac{1}{N!}$$的正整数解的组数. 思路 咱们把式子整理得$$xy-(x+y)N!=0$$.$xy$和$x+y$?貌似可 ...
- LightOJ 1340 - Story of Tomisu Ghost 阶乘分解素因子
http://www.lightoj.com/volume_showproblem.php?problem=1340 题意:问n!在b进制下至少有t个后缀零,求最大的b. 思路:很容易想到一个数通过分 ...
- LightOJ - 1138 (二分+阶乘分解)
题意:求阶乘尾部有Q(1 ≤ Q ≤ 108)个0的最小N 分析:如果给出N,然后求N!尾部0的个数的话,直接对N除5分解即可(因为尾部0肯定是由5*2构成,那么而在阶乘种,2的因子个数要比5少,所以 ...
- Acwing 197. 阶乘分解
给定整数 N ,试把阶乘 N! 分解质因数,按照算术基本定理的形式输出分解结果中的 pipi 和 cici 即可. 输入格式 一个整数N. 输出格式 N! 分解质因数后的结果,共若干行,每行一对pi, ...
- AcWing 197. 阶乘分解 (筛法)打卡
给定整数 N ,试把阶乘 N! 分解质因数,按照算术基本定理的形式输出分解结果中的 pipi 和 cici 即可. 输入格式 一个整数N. 输出格式 N! 分解质因数后的结果,共若干行,每行一对pi, ...
- CH 3101 - 阶乘分解 - [埃筛]
题目链接:传送门 题解: $(1e6)!$ 这种数字,表示都表示不出来,想直接 $O(\sqrt{N})$ 分解质因数这种事情就不要想了. 考虑 $N!$ 的特殊性,这个数字的所有可能包含的质因子,就 ...
- CH3101 阶乘分解
题目链接 分解\(n!\)的质因数,输出相应的\(p_i\)和\(c_i\). 其中\(1\leq n\leq 10^6\). 考虑每一个质因子 \(p\) 在 \(n!\) 中出现的次数.显然, ...
随机推荐
- Java 搜索引擎
1.Java 全文搜索引擎框架 Lucene 毫无疑问,Lucene是目前最受欢迎的Java全文搜索框架,准确地说,它是一个全文检索引擎的架构,提供了完整的查询引擎和索引引擎,部分文本分析引擎.Luc ...
- Centos下新建用户及修改用户目录
Centos下新建用户及修改用户目录 Hillgo 关注 2015.09.22 01:32* 字数 154 阅读 3492评论 0喜欢 3 添加及删除用户 添加用户 test: adduser tes ...
- Python中的包ImportError
前言 Python中的包给我提供了很好的代码组织,相似的功能模块放在同一个包内,不仅代码结构清晰,而且调用起来也比较方便(可以用*导入) 但是,我们在刚开始使用Python包的时候总是会遇到导入错误& ...
- 五、u-boot 启动流程---u-boot.lds
5.1 u-boot.lds 链接脚本分析 uboot 编译出来的第一个链接脚本就是执行 u-boot.lds 链接脚本,去掉里面无用的和没有定义的,进行分析. /* 配置头文件,自动生成的,包含芯 ...
- luogu P4744 [Wind Festival]Iron Man
再次感谢题解区大佬的指点 规定\(pre[i]\)表示前缀\(i\)的前缀和,\(sum[i][j]\)表示区间\([i,j]\)之和 令\(f[i][j]\)表示前i个数选出j段的最大值,\(g[i ...
- [POI2007]ZAP-Queries (莫比乌斯反演+整除分块)
[POI2007]ZAP-Queries \(solution:\) 唉,数论实在有点烂了,昨天还会的,今天就不会了,周末刚证明的,今天全忘了,还不如早点写好题解. 这题首先我们可以列出来答案就是: ...
- java先导课程学习总结
经过两个星期四节课的java学习,我也对java这门语言有了一定的认识.刚开始上课的时候,我认为java把C语言中老师所说的模块化编程进行了强调,进行一个类,一个类的编程,在类中构造相应的方法,使用的 ...
- freeRTOS中文实用教程5--内存管理
1.前言 不同的嵌入式系统具有不同的内存配置和时间要求.所以单一的内存分配算法只可能适合部分应用程序. FreeRTOS 将内存分配作为可移植层面(相对于基本的内核代码部分而言).这使得不同的应用程序 ...
- python将图片转换为Framebuffer裸数据格式(终端显示图片)【转】
转自:https://www.cnblogs.com/zqb-all/p/6107905.html 要在ubuntu终端显示图片或者在板子的LCD显示图片,Framebuffer是一个简单易用的接口, ...
- div里 datapicker显示异常的情况之一
现象:datepicker控价显示一半 因为Div高度太小所以设置一个最小高度min-height这样就可以让时间控价显示完整了.