题目链接:

D. Vika and Segments

time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

Vika has an infinite sheet of squared paper. Initially all squares are white. She introduced a two-dimensional coordinate system on this sheet and drew n black horizontal and vertical segments parallel to the coordinate axes. All segments have width equal to 1 square, that means every segment occupy some set of neighbouring squares situated in one row or one column.

Your task is to calculate the number of painted cells. If a cell was painted more than once, it should be calculated exactly once.

Input

The first line of the input contains a single integer n (1 ≤ n ≤ 100 000) — the number of segments drawn by Vika.

Each of the next n lines contains four integers x1, y1, x2 and y2 ( - 109 ≤ x1, y1, x2, y2 ≤ 109) — the coordinates of the endpoints of the segments drawn by Vika. It is guaranteed that all the segments are parallel to coordinate axes. Segments may touch, overlap and even completely coincide.

 
Output

Print the number of cells painted by Vika. If a cell was painted more than once, it should be calculated exactly once in the answer.

Examples
input
3
0 1 2 1
1 4 1 2
0 3 2 3
output
8
input
4
-2 -1 2 -1
2 1 -2 1
-1 -2 -1 2
1 2 1 -2
output
16
Note

In the first sample Vika will paint squares (0, 1), (1, 1), (2, 1), (1, 2), (1, 3), (1, 4), (0, 3) and (2, 3).

题意:

给了这么多线段,问它们一共包含了多少个点;

思路:

把线段变成宽为1的矩形,然后用扫描线算法求面积;

AC代码:

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const int N=1e5+4;
int n,x1,x2,y3,y2,rec[2*N],num;
struct no
{
int l,r,h,flag;
};
no line[8*N];
struct nod
{
int l,r,cover;
ll sum;
};
nod tree[8*N];
int cmp(no x,no y)
{
return x.h<y.h;
}
void build(int node,int L,int R)
{
tree[node].l=L,tree[node].r=R;
tree[node].cover=tree[node].sum=0;
if(L>=R)return ;
int mid=(L+R)>>1;
build(2*node,L,mid);
build(2*node+1,mid+1,R);
}
void Pushup(int node)
{
if(tree[node].cover)
{
tree[node].sum=rec[tree[node].r+1]-rec[tree[node].l];
}
else
{
if(tree[node].l==tree[node].r)tree[node].sum=0;
else tree[node].sum=tree[2*node].sum+tree[2*node+1].sum;
}
}
void update(int node,int L,int R,int x)
{
if(L<=tree[node].l&&R>=tree[node].r)
{
tree[node].cover+=x;
Pushup(node);
return ;
}
int mid=(tree[node].l+tree[node].r)>>1;
if(L>mid) update(2*node+1,L,R,x);
else if(R<=mid)update(2*node,L,R,x);
else
{
update(2*node,L,mid,x);
update(2*node+1,mid+1,R,x);
}
Pushup(node);
}
int bi(int x)
{
int L=1,R=num-1,mid;
while(L<=R)
{
mid=(L+R)>>1;
if(rec[mid]==x)return mid;
else if(rec[mid]>x)R=mid-1;
else L=mid+1;
}
return -1;
}
int main()
{
scanf("%d",&n);
int cnt=1;
for(int i=1;i<=n;i++)
{
scanf("%d%d%d%d",&x1,&y3,&x2,&y2);
if(x1>x2)swap(x1,x2);
if(y3>y2)swap(y3,y2);
rec[cnt] = line[cnt].l = x1;
line[cnt].r = x2+1;
line[cnt].h = y3;
line[cnt++].flag = 1;
line[cnt].l = x1;
rec[cnt] = line[cnt].r = x2+1;
line[cnt].h = y2+1;
line[cnt++].flag = -1;
}
sort(line+1,line+cnt,cmp);
sort(rec+1,rec+cnt);
num = 2;
for(int i = 2;i < cnt;i++)
{
if(rec[i]!=rec[i-1])rec[num++]=rec[i];
}
build(1,1,num-1);
ll ans=0;
for(int i = 1;i < cnt-1;i++)
{
int fx = bi(line[i].l);
int fy = bi(line[i].r)-1;
if(fx <= fy)
{
update(1,fx,fy,line[i].flag);
}
ans+=tree[1].sum*(ll)(line[i+1].h-line[i].h);
}
cout<<ans<<"\n";
return 0;
}

  

codeforces 610D D. Vika and Segments(离散化+线段树+扫描线算法)的更多相关文章

  1. hdu-1542 Atlantis(离散化+线段树+扫描线算法)

    题目链接: Atlantis Time Limit: 2000/1000 MS (Java/Others)     Memory Limit: 65536/32768 K (Java/Others) ...

  2. 610D - Vika and Segments(线段树+扫描线+离散化)

    扫描线:http://www.cnblogs.com/scau20110726/archive/2013/04/12/3016765.html 看图,图中的数字是横坐标离散后对应的下标,计算时左端点不 ...

  3. 【20.51%】【codeforces 610D】Vika and Segments

    time limit per test2 seconds memory limit per test256 megabytes inputstandard input outputstandard o ...

  4. Educational Codeforces Round 23 F. MEX Queries 离散化+线段树

    F. MEX Queries time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  5. 南阳理工 题目9:posters(离散化+线段树)

    posters 时间限制:1000 ms  |  内存限制:65535 KB 难度:6   描述 The citizens of Bytetown, AB, could not stand that ...

  6. 【POJ】2528 Mayor's posters ——离散化+线段树

    Mayor's posters Time Limit: 1000MS    Memory Limit: 65536K   Description The citizens of Bytetown, A ...

  7. SGU 180 Inversions(离散化 + 线段树求逆序对)

    题目链接:http://acm.sgu.ru/problem.php?contest=0&problem=180 解题报告:一个裸的求逆序对的题,离散化+线段树,也可以用离散化+树状数组.因为 ...

  8. hpu校赛--雪人的高度(离散化线段树)

    1721: 感恩节KK专场——雪人的高度 时间限制: 1 Sec  内存限制: 128 MB 提交: 81  解决: 35 [提交][状态][讨论版] 题目描述 大雪过后,KK决定在春秋大道的某些区间 ...

  9. 【BZOJ1645】[Usaco2007 Open]City Horizon 城市地平线 离散化+线段树

    [BZOJ1645][Usaco2007 Open]City Horizon 城市地平线 Description Farmer John has taken his cows on a trip to ...

随机推荐

  1. FileUpload控件预览图片

    HTML代码: <tr> <td class="auto-style1">上传图片:</td> <td> <asp:FileU ...

  2. jquery列表自动加载更多

    <!doctype html> <html> <head> <meta charset="utf-8"> <title> ...

  3. MySql(八):MySQL性能调优——Query 的优化

    一.理解MySQL的Query Optimizer MySQL Optimizer是一个专门负责优化SELECT 语句的优化器模块,它主要的功能就是通过计算分析系统中收集的各种统计信息,为客户端请求的 ...

  4. c# emit 实现类的代理

    using System; using System.Linq; using System.Reflection; using System.Reflection.Emit; namespace Em ...

  5. 常用string函数分析

    string函数分析string函数包含在string.c文件中,经常被C文件使用.1. strcpy函数原型: char* strcpy(char* str1,char* str2);函数功能: 把 ...

  6. 安装Redis图形监控工具---RedisLive

    RedisLive简介 RedisLive是一款用Python编写基于WEB的Redis图形监控工具,也是一款实时监控Redis数据的开源软件,以WEB的形式展现出redis中的key的情况,实例数据 ...

  7. mongodb的启动参数--quiet

    ”mongo群友在群里问了个问题,问的是--quiet启动参数如何用的? 如何理解安静的输出?“ 看到这个问题,之前看过--quiet这个参数,没有认真研究过,也没在生产中使用过. 在mongodb启 ...

  8. 流式 storm介绍

    Storm是什么 如果只用一句话来描述storm的话,可能会是这样:分布式实时计算系统.按照storm作者的说法,storm对于实时计算的意义类似于hadoop对于批处理的意义.我们都知道,根据goo ...

  9. golang手动管理内存

    作者:John Graham-Cumming.   原文点击此处.翻译:Lubia Yang(已失效) 前些天我介绍了我们对Lua的使用,implement our new Web Applicati ...

  10. wpf 获取datagrid 模板列中的控件

    目前采用的 方法  (网上提供的一款) public static DataGridRow GetRow(DataGrid datagrid, int columnIndex)        {    ...